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Motivation

 GR is not the final theory on spacetime;
* Quantum gravity to unify of GR and QM;
» Effective approach to QG:

- Spacetime is described by g,
- EOM is modified to G/‘;’,ff =0

Ununification between GR and QM
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Canonical quantum gravity

Hamiltonian formulation V.S. General covariance

Space+time Spacetime

 The requirement of a 3+1 decomposition may potentially obscure general covariance.
* How can general covariance be restored in the Hamiltonian framework?



Motivation

Canonical quantum gravity

Hamiltonian formulation V.S. General covariance

Space+time Spacetime

 The requirement of a 3+1 decomposition may potentially obscure general covariance.
« How can general covariance be restored in the Hamiltonian framework?

Investigating this issue in the spherically symmetric gravitation model with 2~ = (x, 6, ¢)
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{H.N,1, Hog[N,1} = H [uE'(E?)™*(N,0,N, — N,0,N))].

where /1 is some unknown factor. In the classical theory y = 1

What is the precise meaning of general covariance in the Hamiltonian formulation?



Covariance in canonical formulation

How to solve dynamics in the canonical formulation?

1) Choose a lapse function N and a shift vector N*
2) Solve the Hamilton’s equation:

K, = {K,, H.4[N1+H[N"1},
E' = {E',H [N+H[N*]};

(E°)°

i (dx + N*dt)* + E'dQ?

3) Define the metric as: ds? = — N*dt* 1




Covariance in canonical formulation

How to solve dynamics in the canonical formulation?

1) Choose a lapse function N and a shift vector N*
2) Solve the Hamilton’s equation:

K, = {K,, H.4[N1+H[N"1},

E' = {E',H [N+H[N*]};

(E®)
El

3) Define the metric as: ds = — N°dt’ 4 (dx + N*dt)> + E'dQ?

If the final metric depends on the choice of N and N*
 No: theory is covariant;
* Yes: theory is not covariant.

n" g h = Np# + N



(General Covariance in Effective QG

N* — N* — ¢[N°*uE (E*)~*0,a + (Z ;)]
N = N+ €[L gy yN+ N0 a], N=0,—NO,
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(General Covariance in Effective QG

N* - N*— ¢[N°uE (E*)~*0,a + (Z;N)']
N = N+ e[Z 4N+ NNoal, N=09—-N9,

§t By constraint algebra
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3¢ By constraint algebra

K (x) = Ki(x) + e{K;(x), HglaN] + H [[/*]}

A; = 0 if H ¢ is independent of 0,K;
E'(x) - E'(x) + e{E'(x), H.;[aN] + H [$*]}

08,,dx"dx" = Z 51, 5(8,,dX"dx?), theory is covariant (e.g., Classical theory)

Gauge trans. = spacetime diff. trans
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(General Covariance in Effective QG

N* — N* — ¢[N°*uE (E*)~*0,a + (Z ;)]

og dxPdx° =% dx”dx®
N — N+ elL N+ N0 a], N =0,— N0, Epo an+p8po )

)

A, 24, i .
+ G ~ g ) @+ Ve - 4,00

+N(1 — wo,a(2dxdr + 2N'(dD)’)

3¢ By constraint algebra

K (x) = Ki(x) + e{K;(x), HglaN] + H [[/*]}

A; = 0 if H ¢ is independe
E'(x) - E'(x) + e{E'(x), H.;[aN] + H [$*]}

of 0.K;

08,,dx"dx" = Z 51, 5(8,,dX"dx?), theory is covariant (e.g., Classical theory)

In general: 5gp6dxp dx® # £ am+ﬁ(8pgdxp dx?).

We cannot use the classical

definition of g
Two key elements: 1) the metric; 2) the constraints

General Covariance needs them to be aligned: fix metric and find H
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(General Covariance in Effective QG

We introduce the effective metric gé’[j) defined by {H [N7], H[N;]} = H[N{o.N;y — N50 N7,
) ) o (E) S (H[N1, HIM*} = — Ho([M*9,N],
ds(ﬂ) = — N°dt” + (dx + N*dt)” + E"dS2

uE! (Hegt V1], Hege N2 1} = Hx[_)z(N 10,V — N0, Ny

so that q(x/f) = uEY(E?*)™? 4
[Se-e also other works by M. BOjowaId,S, A. AlonSO'Bardaji, and D. In the classical theory, the factor here has the
Brizuela, and so on] o _
geometric interpretation of g™.
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Theorem 1. Suppose the constraint algebra (3.1). The associated Hamiltonian theory is

covariant with respect to g,(,’;) given in (3.10), namely equation

6955 = Lom+s94y
holds for all smeared function a and smeared vector field 3*0, if and only if
(i) Heg is independent of Op K for alln > 1;
(ii) The following equation is satisfied for all phase space independent o and N :

a{usS, Heg[N]} = {5, Hegt|N]} . (3.19)

[CZ, J. LewandowskKi, Y. Ma, J. Yang, 2025]
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Derivative the covariance eguation

Constraint algebra: Covariance conditions:
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Derivative the covariance eguation

Constraint algebra: Covariance conditions:
{Hx[NiC], Hx[Ng } — Hx[Nfafo — NgaxNiC], (i) Heg is independent of 00 K1 for allm > 1;
{Heff[N ], Hx[M x: } = — eff[M xde ], (ii) The following equation is satisfied for all phase space independent o and N :
{HeN,1, Hog[N,]1} = H [WE'(E?)™*(N,0,N, — N,0,N))].

a{pS, Heg[N]} = {5, Hegi[@N]} . (3.19)

Aim: to get the expression of H_

H. . = E’F

P c
H. is a scalar density with weight 1 oo -

I is a scalar field, i.e. function of elementary scalars

Additional assumption: 0' K, is excluded as in classical theory;

F should be a function of basic scalars formed from K, E’, 0 _E! 0°E! S6> 57 18 excluded
07K, is excluded due to the requirement (1); because we want Heff.to
1 | el o have regular behavior in
« O0YE" (n > 2) are excluded, otherwise { H.4[N], H.4[N>]} = -+ + N0, "N, — N,0." "N, the classical regime
. . . 1 K 1 a)cE ! axS4 axE : axS4
The remaining basic scalars are: 5, = £, 5, = K,, 5, = — 4= T 85 = o, 8 = , §7 = :
E E E K K



Derivative the covariance eguation

Constraint algebra: Covariance conditions:
{HX[NiC], [{X[NéC } — Hx[NfaxNg — Ngafo]’ (i) Heg is independent of 00 K1 for allm > 1;
{Heff[N ], Hx[M x: } = — eff[M xde ], (ii) The following equation is satisfied for all phase space independent o and N :
{Hg[N,], Hg N>} = H[WE' (E*) 72 (N10,N, — N,O,Ny)] . a{uS, Hei[N]} = {15, Hegt [N} .

Aim: to get the expression of H_
H. = E°F

H,yris a scalar density with weight 1 === ™

I is a scalar field, i.e. function of elementary scalars

we finally get

oo M o M.
822 ff83 | 848 ff85 + R\, (4.39)
4

H.g = —2F"? 831Meﬁ‘ |

where R(s1, Mog) is an arbitrary function, and Mg(s1, S2, S4) satisfies the equations (4.35)
and (4.38), i.e.,

HUS1854
4G2 — (BSQMeﬁ)882884Meff _ (834Meff)a§2Meffa

(052 14)Osy Meft — (054 pt) Os, Mgt = 0.

(4.40)

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

(3.19)



Solutions to the covariance equation
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Solutions to the covariance equation
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[(34)2 + Z] - %(832Meff)27 for arbitrary functions Z of s; = E' and M,



Solutions to the covariance equation

ps184 2
— 88 Meff 83 83 Me — 83 Me 63 Me .
102 = (Os2Meft)0s;05, Mest — (05, Mett) 0, Mest (4.40)

(052 14)0sy Mest — (Osqt)Os, Mgt = 0.

{1 is a function of s; and M

Solve EOM
—P M. =M with 9, M(z)+ 22R(z*, M (z)) = 0.

[(34)2 + Z] - %(832Meff)27 for arbitrary functions Z of s; = E' and M,

1 4
ds® = ZNQZdtﬁ uZdzcz + z2dO?,

N (z) = exp (2 / a:(@MeffR)(a:)da:>




Solutions to the covariance equation

HS154 2
— (Bs, Mogt)Bs, 05, Mot — (8, Mot) 2 Mg,
42 ( 2 ff) o UsyiVleff ( 4 ff) o tHieff (4.40)

(052 14)0sy Mest — (Osqt)Os, Mgt = 0.

{1 is a function of s; and M

I M_Sl [(84)2 4 Z] — ((932Meff)27 for arbitrary functions Z of s, 1 and M

1
2
Solve EOM
— M. = M with 0, M(z) + 22R(z*, M (z)) = 0.

1 4
ds? = = N*Zdt? dz?* + z2dQ?,
4 Wz

N (z) = exp (2 / :c(BMeffR)(m)d:c)

.A [CZ, Z. Cao, 2025]

1 1

Given ds® = —F(x;m)dt? + H(z;m) 'dz? + 22dQ?, =—Pp F = —1N2Z, H=—-pz.



LQG motivated metrics: g-scheme LQBH

| K, 0. E! 0.5,
SIZE,S2:K2,S3:_,S4: ,SSZ_.

ds?) = —fdf? + fridx? + x2dQ2, e
oM 52( 2M)2

f1:1 ~TH l ——

X X A [CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

3qin2 [ 52 |
v VIR re)?
eff 2 ' 2{2 _ € 1 ’
Transition region
OR connecting BH

d WH
2M 40P o

4

X X 2Cs =

3 Sl\/ (s4)* — 4 sin 4 X

V 51 . 9 CSz 22:5 \/S_l 51

M 4 = s;n“ | —— =% ¥ :
2072 4C

V51 S1

for arbitrary E(s;, s,)

[CZ, Z. Cao, 2025]



LQG motivated metrics: g-scheme LQBH

T (T =n/2)
ds%z) = —fod* + ;o dx? + x2dQ?,
B
2M 2 2M
fo=1 ; ,M2:1—|-C—2<1 )

X X X

/51°sin’ (ﬁ) V51 (54)%cos?(%2)
M3 =L - =

2 2¢ 2 8
Transition surface

connecting BH
and WH

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

K 0.E' 0,S
1 1 4
SIZE’SZZKQ,’S3:E’S4: 22 ’S5:§°

T (T'=m/2)



A metric without Cauchy horizon

ds?y = —f3Vdt? + i3t (f5) 7 da? + 2%d0?,

=(n  x? . [ 2GM(? nmwL?
?E )(:c) =1 —(—1) ?arcsm( 3 ) 2
AG*(*M?
3(37) =1 3§6

) 2 | 2 ] S
M(3)=\/S_1 sin(é— 1+(Sz)2_% ) 0

eff 2Gé’2 S

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]




Hayward metric

ds* = — Iy dt* + (1'7[71)_1 dx? + x*dQ?
2

Frg=1
N z3 + 2¢*m

(242 eﬁ+f)\/(84)2 4F g (Meg, /1)
8s1 +2¢* ((84)% — 4)

251 arctanh V5T thn e/ |

-1
— <_\/481 +C2 ((84)2 _4)3 ~ 2\/5827

[CZ, Z. Cao, 2025]




Matter coupling: coupled to EM field

Classical theory: Covariant effective theory:

A dx’ = ®&dr + I'dx
P ’ JuE!
Ag‘)dxpz[‘P+(N ng +N"]l“

\/E

E?2

dr + I'dx

<I>=‘P+[N +N"]I‘

[J. Yang, Y. Ma, CZ, 2025]



Conclusion and outlook

 The sufficient and necessary condition for covariance;  Covariance equation for the effective Hamiltonian constraint;
(i) H.;is independent of derivatives of K; Heg = —2E° [aslMeferaszjzweﬁ 83+884i4 = 85+R], (6)
(i) {Sx), HglaN]} = a(x){S(x), H.zIN]} for any phase where R is an arbitrary function of s; and Mg, and Mg
space independent functions a and V. depending on s1, $2, 84 is a solution to:
EE2 = (80, Mot) 01,05, Mest — (95, Mest) 02, Most, (Ta)
(s, 1) 0s, Mogr — (0s, Megt)0s, 10 = 0. (7b)

 Three solutions to the covariance equation:

 Reconstruction of dynamics from geometry

ds? = %NZZdtg ;;dazz + z2dQ?,




Thanks for your attention!




