General covariance in effective quantum black hole models Cong Zhang

In collaboration with J. Lewandowski, Y. Ma, J. Yang, Z. Cao

Based on: PRD 111, L081504 (2025), PRD 112, 044054 (2025),

PRD 112, 064049 (2025), ArXiv: 2506.09540

Jerzy Lewandowski Memorial Conference, Sept. 2025

Motivation

Ununification between GR and QM

- GR is not the final theory on spacetime;
- Quantum gravity to unify of GR and QM;
- Effective approach to QG:
 - Spacetime is described by $g_{\mu\nu}$
 - EOM is modified to $G_{\mu\nu}^{\mathrm{eff}}=0$

Motivation

Canonical quantum gravity

Hamiltonian formulation

V.S.

General covariance

Space+time

Spacetime

- The requirement of a 3+1 decomposition may potentially obscure general covariance.
- How can general covariance be restored in the Hamiltonian framework?

Motivation

Canonical quantum gravity

Hamiltonian formulation

V.S.

General covariance

Space+time

Spacetime

- The requirement of a 3+1 decomposition may potentially obscure general covariance.
- How can general covariance be restored in the Hamiltonian framework?

Investigating this issue in the spherically symmetric gravitation model with $\Sigma \ni (x, \theta, \phi)$

Mathematical settings: spherically symmetric model

- Phase space: $(K_I(x), E^I(x)), I = 1, 2;$
- Dynamics: the Diff constraints H_{χ} and the Ham. constraint H_{eff} .

Mathematical settings: spherically symmetric model

- Phase space: $(K_I(x), E^I(x)), I = 1, 2;$
- Dynamics: the Diff constraints H_χ and the Ham. constraint H_{eff} .
 - $H_{\scriptscriptstyle \chi}$ is assumed to keep its classical expression, but $H_{\rm eff}$ is unknown
 - Assume the following constraint algebra

$$\{H_x[N_1^x], H_x[N_2^x]\} = H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x],$$

$$\{H_{\text{eff}}[N], H_x[M^x]\} = -H_{\text{eff}}[M^x \partial_x N],$$

$$\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)].$$

where μ is some unknown factor. In the classical theory $\mu=1$

Mathematical settings: spherically symmetric model

- Phase space: $(K_I(x), E^I(x)), I = 1, 2;$
- Dynamics: the Diff constraints H_{χ} and the Ham. constraint H_{eff} .
 - $H_{\scriptscriptstyle \chi}$ is assumed to keep its classical expression, but $H_{\rm eff}$ is unknown
 - Assume the following constraint algebra

$$\{H_x[N_1^x], H_x[N_2^x]\} = H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x],$$

$$\{H_{\text{eff}}[N], H_x[M^x]\} = -H_{\text{eff}}[M^x \partial_x N],$$

$$\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)].$$

where μ is some unknown factor. In the classical theory $\mu=1$

What is the precise meaning of general covariance in the Hamiltonian formulation?

Covariance in canonical formulation

How to solve dynamics in the canonical formulation?

- 1) Choose a lapse function N and a shift vector N^x
- 2) Solve the Hamilton's equation:

$$\dot{K}_{I} = \{K_{I}, H_{\text{eff}}[N] + H_{x}[N^{x}]\},$$

 $\dot{E}^{I} = \{E^{I}, H_{\text{eff}}[N] + H_{x}[N^{x}]\};$

3) Define the metric as:
$$ds^2 = -N^2 dt^2 + \frac{(E^2)^2}{E^1} (dx + N^x dt)^2 + E^1 d\Omega^2$$

Covariance in canonical formulation

How to solve dynamics in the canonical formulation?

- 1) Choose a lapse function N and a shift vector N^x
- 2) Solve the Hamilton's equation:

$$\dot{K}_{I} = \{K_{I}, H_{\text{eff}}[N] + H_{x}[N^{x}]\},$$

 $\dot{E}^{I} = \{E^{I}, H_{\text{eff}}[N] + H_{x}[N^{x}]\};$

3) Define the metric as:
$$ds^2 = -N^2 dt^2 + \frac{(E^2)^2}{E^1} (dx + N^x dt)^2 + E^1 d\Omega^2$$

If the final metric depends on the choice of N and $N^{\!\scriptscriptstyle X}$

- No: theory is covariant;
- Yes: theory is not covariant.

$$n^{\mu} + t^{\mu} \quad t^{\mu} = Nn^{\mu} + N^{\mu}$$

$$N^{x} \to N^{x} - \epsilon [N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \to N + \epsilon [\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

$$N^{x} \to N^{x} - \epsilon [N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \to N + \epsilon [\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

By constraint algebra

$$K_I(x) \rightarrow K_I(x) + \epsilon \{K_I(x), H_{\text{eff}}[\alpha N] + H_x[\beta^x]\}$$

 $E^I(x) \rightarrow E^I(x) + \epsilon \{E^I(x), H_{\text{eff}}[\alpha N] + H_x[\beta^x]\}$

$$N^{x} \to N^{x} - \epsilon [N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$
 $N \to N + \epsilon [\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$

By constraint algebra
$$K_{I}(x) \to K_{I}(x) + \epsilon \{K_{I}(x), H_{\text{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

 $E^{I}(x) \rightarrow E^{I}(x) + \epsilon \{E^{I}(x), H_{\text{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$

$$\begin{split} \delta g_{\rho\sigma} \mathrm{d} x^{\rho} \mathrm{d} x^{\sigma} &= \mathcal{L}_{\alpha \mathfrak{N} + \beta} (g_{\rho\sigma} \mathrm{d} x^{\rho} \mathrm{d} x^{\sigma}) \\ &+ \left(\frac{\Delta_1}{(E^1)^2} - \frac{2\Delta_2}{E^1 E^2} \right) (\mathrm{d} x + N^x \mathrm{d} t)^2 - \Delta_1 \mathrm{d} \Omega^2 \\ &+ N^2 (1 - \mu) \partial_x \alpha (2 \mathrm{d} x \mathrm{d} t + 2 N^x (\mathrm{d} t)^2) \end{split}$$

 $\Delta_I = 0$ if $H_{\rm eff}$ is independent of $\partial_x K_I$

$$N^{x} \rightarrow N^{x} - \epsilon[N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{M})^{x}]$$

$$N \rightarrow N + \epsilon[\mathcal{L}_{\alpha\mathfrak{M}+\beta}N + N\mathfrak{M}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{M} = \partial_{t} - N^{x}\partial_{x}$$

$$+ \left(\frac{\Delta_{1}}{(E^{1})^{2}} - \frac{2\Delta_{2}}{E^{1}E^{2}}\right)(\mathrm{d}x + N^{x}\mathrm{d}t)^{2} - \Delta_{1}\mathrm{d}\Omega^{2}$$

$$+ N^{2}(1 - \mu)\partial_{x}\alpha(2\mathrm{d}x\mathrm{d}t + 2N^{x}(\mathrm{d}t)^{2})$$

$$K_{I}(x) \rightarrow K_{I}(x) + \epsilon\{K_{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$E^{I}(x) \rightarrow E^{I}(x) + \epsilon\{E^{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$\Delta_{I} = 0 \text{ if } H_{\mathrm{eff}} \text{ is independent of } \partial_{x}K_{I}$$

 $\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} = \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$, theory is covariant (e.g., Classical theory)

$$N^{x} \rightarrow N^{x} - \epsilon[N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \rightarrow N + \epsilon[\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

$$+ \left(\frac{\Delta_{1}}{(E^{1})^{2}} - \frac{2\Delta_{2}}{E^{1}E^{2}}\right)(\mathrm{d}x + N^{x}\mathrm{d}t)^{2} - \Delta_{1}\mathrm{d}\Omega^{2}$$

$$+ N^{2}(1 - \mu)\partial_{x}\alpha(2\mathrm{d}x\mathrm{d}t + 2N^{x}(\mathrm{d}t)^{2})$$

$$K_{I}(x) \rightarrow K_{I}(x) + \epsilon\{K_{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$E^{I}(x) \rightarrow E^{I}(x) + \epsilon\{E^{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$\Delta_{I} = 0 \text{ if } H_{\mathrm{eff}} \text{ is independent of } \partial_{x}K_{I}$$

$$\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} = \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$$
, theory is covariant (e.g., Classical theory)

Gauge trans. = spacetime diff. trans

$$N^{x} \rightarrow N^{x} - \epsilon[N^{2}\mu E^{\dagger}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \rightarrow N + \epsilon[\mathcal{L}_{a\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

$$+ \left(\frac{\Delta_{1}}{(E^{1})^{2}} - \frac{2\Delta_{2}}{E^{1}E^{2}}\right)(\mathrm{d}x + N^{x}\mathrm{d}t)^{2} - \Delta_{1}\mathrm{d}\Omega^{2}$$

$$+ N^{2}(1 - \mu)\partial_{x}\alpha(2\mathrm{d}x\mathrm{d}t + 2N^{x}(\mathrm{d}t)^{2})$$

$$K_{I}(x) \rightarrow K_{I}(x) + \epsilon\{K_{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$E^{I}(x) \rightarrow E^{I}(x) + \epsilon\{E^{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$\Delta_{I} = 0 \text{ if } H_{\mathrm{eff}} \text{ is independent of } \partial_{x}K_{I}$$

$$\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} = \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$$
, theory is covariant (e.g., Classical theory)

In general: $\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} \neq \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$.

$$N^{x} \rightarrow N^{x} - \epsilon[N^{2}\mu E^{\dagger}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \rightarrow N + \epsilon[\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

$$+ \left(\frac{\Delta_{1}}{(E^{1})^{2}} - \frac{2\Delta_{2}}{E^{1}E^{2}}\right)(\mathrm{d}x + N^{x}\mathrm{d}t)^{2} - \Delta_{1}\mathrm{d}\Omega^{2}$$

$$+ N^{2}(1 - \mu)\partial_{x}\alpha(2\mathrm{d}x\mathrm{d}t + 2N^{x}(\mathrm{d}t)^{2})$$

$$K_{I}(x) \rightarrow K_{I}(x) + \epsilon\{K_{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$E^{I}(x) \rightarrow E^{I}(x) + \epsilon\{E^{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$\Delta_{I} = 0 \text{ if } H_{\mathrm{eff}} \text{ is independent of } \partial_{x}K_{I}$$

$$\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} = \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$$
, theory is covariant (e.g., Classical theory)

In general: $\delta g_{\rho\sigma} \mathrm{d}x^{\rho} \mathrm{d}x^{\sigma} \neq \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} \mathrm{d}x^{\rho} \mathrm{d}x^{\sigma})$.

Two key elements: 1) the metric; 2) the constraints

General Covariance needs them to be aligned: fix metric and find $H_{
m eff}$

$$N^{x} \rightarrow N^{x} - \epsilon[N^{2}\mu E^{1}(E^{2})^{-2}\partial_{x}\alpha + (\mathcal{L}_{\beta}\mathfrak{N})^{x}]$$

$$N \rightarrow N + \epsilon[\mathcal{L}_{\alpha\mathfrak{N}+\beta}N + N\mathfrak{N}^{\rho}\partial_{\rho}\alpha], \quad \mathfrak{N} = \partial_{t} - N^{x}\partial_{x}$$

$$+ \left(\frac{\Delta_{1}}{(E^{1})^{2}} - \frac{2\Delta_{2}}{E^{1}E^{2}}\right)(\mathrm{d}x + N^{x}\mathrm{d}t)^{2} - \Delta_{1}\mathrm{d}\Omega^{2}$$

$$+ N^{2}(1 - \mu)\partial_{x}\alpha(2\mathrm{d}x\mathrm{d}t + 2N^{x}(\mathrm{d}t)^{2})$$

$$K_{I}(x) \rightarrow K_{I}(x) + \epsilon\{K_{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$E^{I}(x) \rightarrow E^{I}(x) + \epsilon\{E^{I}(x), H_{\mathrm{eff}}[\alpha N] + H_{x}[\beta^{x}]\}$$

$$\Delta_{I} = 0 \text{ if } H_{\mathrm{eff}} \text{ is independent of } \partial_{x}K_{I}$$

$$\delta g_{\rho\sigma} dx^{\rho} dx^{\sigma} = \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} dx^{\rho} dx^{\sigma})$$
, theory is covariant (e.g., Classical theory)

In general: $\delta g_{\rho\sigma} \mathrm{d} x^{\rho} \mathrm{d} x^{\sigma} \neq \mathcal{L}_{\alpha\mathfrak{N}+\beta}(g_{\rho\sigma} \mathrm{d} x^{\rho} \mathrm{d} x^{\sigma})$.

We cannot use the classical definition of $g_{\mu\nu}$

Two key elements: 1) the metric; 2) the constraints

General Covariance needs them to be aligned: fix metric and find $H_{
m eff}$

We introduce the effective metric $g_{ab}^{(\mu)}$ defined by

$$ds_{(\mu)}^2 = -N^2 dt^2 + \frac{(E^2)^2}{\mu E^1} (dx + N^x dt)^2 + E^1 d\Omega^2$$
 so that $q_{(\mu)}^{xx} = \mu E^1 (E^2)^{-2}$

[see also other works by M. Bojowald's, A. Alonso-Bardaji, and D. Brizuela, and so on]

$$\{H_x[N_1^x], H_x[N_2^x]\} = H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x],$$

$$\{H_{\text{eff}}[N], H_x[M^x]\} = -H_{\text{eff}}[M^x \partial_x N],$$

$$\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)].$$

In the classical theory, the factor here has the geometric interpretation of q^{xx} .

We introduce the effective metric $g_{ab}^{(\mu)}$ defined by

$$ds_{(\mu)}^2 = -N^2 dt^2 + \frac{(E^2)^2}{\mu E^1} (dx + N^x dt)^2 + E^1 d\Omega^2$$
 so that $q_{(\mu)}^{xx} = \mu E^1 (E^2)^{-2}$

[see also other works by M. Bojowald's, A. Alonso-Bardaji, and D. Brizuela, and so on]

$$\{H_{x}[N_{1}^{x}], H_{x}[N_{2}^{x}]\} = H_{x}[N_{1}^{x}\partial_{x}N_{2}^{x} - N_{2}^{x}\partial_{x}N_{1}^{x}],$$

$$\{H_{eff}[N], H_{x}[M^{x}]\} = -H_{eff}[M^{x}\partial_{x}N],$$

$$\{H_{eff}[N_{1}], H_{eff}[N_{2}]\} = H_{x}[\mu E^{1}(E^{2})^{-2}(N_{1}\partial_{x}N_{2} - N_{2}\partial_{x}N_{1})].$$

$$\equiv \mu S$$

In the classical theory, the factor here has the geometric interpretation of q^{xx} .

Theorem 1. Suppose the constraint algebra (3.1). The associated Hamiltonian theory is covariant with respect to $g_{\rho\sigma}^{(\mu)}$ given in (3.10), namely equation

$$\delta g_{
ho\sigma}^{(\mu)} = \mathcal{L}_{lpha \mathfrak{N} + eta} g_{
ho\sigma}^{(\mu)}$$

holds for all smeared function α and smeared vector field $\beta^x \partial_x$ if and only if

- (i) H_{eff} is independent of $\partial_r^n K_1$ for all $n \geq 1$;
- (ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \{ \mu S, H_{\text{eff}}[N] \} = \{ \mu S, H_{\text{eff}}[\alpha N] \}.$$
 (3.19)

We introduce the effective metric $g_{ab}^{(\mu)}$ defined by

$$ds_{(\mu)}^2 = -N^2 dt^2 + \frac{(E^2)^2}{\mu E^1} (dx + N^x dt)^2 + E^1 d\Omega^2$$
 so that $q_{(\mu)}^{xx} = \mu E^1 (E^2)^{-2}$

[see also other works by M. Bojowald's, A. Alonso-Bardaji, and D. Brizuela, and so on]

If $H_{\rm eff}$ exists and if it exists, it is unique?

$$\{H_{x}[N_{1}^{x}], H_{x}[N_{2}^{x}]\} = H_{x}[N_{1}^{x}\partial_{x}N_{2}^{x} - N_{2}^{x}\partial_{x}N_{1}^{x}],$$

$$\{H_{eff}[N], H_{x}[M^{x}]\} = -H_{eff}[M^{x}\partial_{x}N],$$

$$\{H_{eff}[N_{1}], H_{eff}[N_{2}]\} = H_{x}[\mu E^{1}(E^{2})^{-2}(N_{1}\partial_{x}N_{2} - N_{2}\partial_{x}N_{1})].$$

$$\equiv \mu S$$

In the classical theory, the factor here has the geometric interpretation of q^{xx} .

Theorem 1. Suppose the constraint algebra (3.1). The associated Hamiltonian theory is covariant with respect to $g_{\rho\sigma}^{(\mu)}$ given in (3.10), namely equation

$$\delta g_{
ho\sigma}^{(\mu)} = \mathcal{L}_{lpha \mathfrak{N} + eta} g_{
ho\sigma}^{(\mu)}$$

holds for all smeared function α and smeared vector field $\beta^x \partial_x$ if and only if

- (i) H_{eff} is independent of $\partial_r^n K_1$ for all $n \geq 1$;
- (ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \{ \mu S, H_{\text{eff}}[N] \} = \{ \mu S, H_{\text{eff}}[\alpha N] \}.$$
 (3.19)

Constraint algebra:

$$\begin{split} \{H_x[N_1^x], H_x[N_2^x]\} &= H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x], \\ \{H_{\text{eff}}[N], H_x[M^x]\} &= -H_{\text{eff}}[M^x \partial_x N], \\ \{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} &= H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)] \,. \end{split}$$

Aim: to get the expression of H_{eff}

Covariance conditions:

(i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;

(ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Constraint algebra:

$$\{H_{x}[N_{1}^{x}], H_{x}[N_{2}^{x}]\} = H_{x}[N_{1}^{x}\partial_{x}N_{2}^{x} - N_{2}^{x}\partial_{x}N_{1}^{x}],$$

$$\{H_{\text{eff}}[N], H_{x}[M^{x}]\} = -H_{\text{eff}}[M^{x}\partial_{x}N],$$

$$\{H_{\text{eff}}[N_{1}], H_{\text{eff}}[N_{2}]\} = H_{x}[\mu E^{1}(E^{2})^{-2}(N_{1}\partial_{x}N_{2} - N_{2}\partial_{x}N_{1})].$$

Covariance conditions:

- (i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;
- (ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Aim: to get the expression of $H_{ m eff}$

 $H_{\rm eff} \ {\rm is \ a \ scalar \ density \ with \ weight \ 1} \ = \ F \ {\rm is \ a \ scalar \ field, \ i.e. \ function \ of \ elementary \ scalars}$

$$H_{\text{eff}} = E^2 F$$

Constraint algebra:

$$\{H_x[N_1^x], H_x[N_2^x]\} = H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x],$$

$$\{H_{\text{eff}}[N], H_x[M^x]\} = -H_{\text{eff}}[M^x \partial_x N],$$

$$\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)].$$

Covariance conditions:

(i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;

(ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \{ \mu S, H_{\text{eff}}[N] \} = \{ \mu S, H_{\text{eff}}[\alpha N] \}.$$
 (3.19)

Aim: to get the expression of H_{eff}

Additional assumption: $\partial_x^n K_2$ is excluded as in classical theory;

Constraint algebra:

$$\{H_{x}[N_{1}^{x}], H_{x}[N_{2}^{x}]\} = H_{x}[N_{1}^{x}\partial_{x}N_{2}^{x} - N_{2}^{x}\partial_{x}N_{1}^{x}],$$

$$\{H_{\text{eff}}[N], H_{x}[M^{x}]\} = -H_{\text{eff}}[M^{x}\partial_{x}N],$$

$$\{H_{\text{eff}}[N_{1}], H_{\text{eff}}[N_{2}]\} = H_{x}[\mu E^{1}(E^{2})^{-2}(N_{1}\partial_{x}N_{2} - N_{2}\partial_{x}N_{1})]$$

Covariance conditions:

(i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;

(ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Aim: to get the expression of $H_{\rm eff}$

$$H_{\text{eff}} = E^2 F$$

Additional assumption: $\partial_x^n K_2$ is excluded as in classical theory;

F should be a function of basic scalars formed from K_I , E^I , $\partial_x E^I$ $\partial_x^2 E^I$

- $\partial_x^n K_1$ is excluded due to the requirement (1);
- $\partial_x^n E^{\bar{I}}$ (n > 2) are excluded, otherwise $\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = \cdots + N_1 \partial_x^{n-1} N_2 N_2 \partial_x^{n-1} N_1$

Constraint algebra:

$$\begin{split} \{H_x[N_1^x], H_x[N_2^x]\} &= H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x], \\ \{H_{\text{eff}}[N], H_x[M^x]\} &= -H_{\text{eff}}[M^x \partial_x N], \\ \{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} &= H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)] \,. \end{split}$$

Covariance conditions:

(i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;

(ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Aim: to get the expression of H_{eff}

$$H_{\text{eff}} = E^2 F$$

Additional assumption: $\partial_x^n K_2$ is excluded as in classical theory;

F should be a function of basic scalars formed from K_I , E^I , $\partial_v E^I$ $\partial_v^2 E^I$

- $\partial_x^n K_1$ is excluded due to the requirement (1);
- $\partial_x^n E^I(n > 2)$ are excluded, otherwise $\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = \dots + N_1 \partial_x^{n-1} N_2 N_2 \partial_x^{n-1} N_1$

The remaining basic scalars are: $s_1 = E^1$, $s_2 = K_2$, $s_3 = \frac{K_1}{E^2}$, $s_4 = \frac{\partial_x E^1}{E^2}$, $s_5 = \frac{\partial_x s_4}{E^2}$, $s_6 = \frac{\partial_x E^1}{K_1}$, $s_7 = \frac{\partial_x s_4}{K_1}$.

Constraint algebra:

$$\begin{split} \{H_x[N_1^x], H_x[N_2^x]\} &= H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x], \\ \{H_{\text{eff}}[N], H_x[M^x]\} &= -H_{\text{eff}}[M^x \partial_x N], \\ \{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} &= H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)] \,. \end{split}$$

Covariance conditions:

(i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;

(ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Aim: to get the expression of $H_{\rm eff}$

$$H_{\text{eff}} = E^2 F$$

Additional assumption: $\partial_x^n K_2$ is excluded as in classical theory;

F should be a function of basic scalars formed from K_I , E^I , $\partial_x E^I$ $\partial_x^2 E^I$

- $\partial_x^n K_1$ is excluded due to the requirement (1);
- $\partial_x^n E^I$ (n > 2) are excluded, otherwise $\{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} = \dots + N_1 \partial_x^{n-1} N_2 N_2 \partial_x^{n-1} N_1$

 s_6, s_7 is excluded because we want $H_{
m eff}$ to have regular behavior in the classical regime

The remaining basic scalars are:
$$s_1 = E^1$$
, $s_2 = K_2$, $s_3 = \frac{K_1}{E^2}$, $s_4 = \frac{\partial_x E^1}{E^2}$, $s_5 = \frac{\partial_x s_4}{E^2}$, $s_6 = \frac{\partial_x E^1}{K_1}$, $s_7 = \frac{\partial_x s_4}{K_1}$.

Constraint algebra:

$$\begin{split} \{H_x[N_1^x], H_x[N_2^x]\} &= H_x[N_1^x \partial_x N_2^x - N_2^x \partial_x N_1^x], \\ \{H_{\text{eff}}[N], H_x[M^x]\} &= -H_{\text{eff}}[M^x \partial_x N], \\ \{H_{\text{eff}}[N_1], H_{\text{eff}}[N_2]\} &= H_x[\mu E^1(E^2)^{-2}(N_1 \partial_x N_2 - N_2 \partial_x N_1)] \,. \end{split}$$

Covariance conditions:

- (i) H_{eff} is independent of $\partial_x^n K_1$ for all $n \geq 1$;
- (ii) The following equation is satisfied for all phase space independent α and N:

$$\alpha \left\{ \mu S, H_{\text{eff}}[N] \right\} = \left\{ \mu S, H_{\text{eff}}[\alpha N] \right\}. \tag{3.19}$$

Aim: to get the expression of H_{eff}

$$H_{\text{eff}} = E^2 F$$

we finally get

$$H_{\text{eff}} = -2E^2 \left[\partial_{s_1} M_{\text{eff}} + \frac{\partial_{s_2} M_{\text{eff}}}{2} s_3 + \frac{\partial_{s_4} M_{\text{eff}}}{s_4} s_5 + \mathcal{R} \right],$$
 (4.39)

where $\mathcal{R}(s_1, M_{\text{eff}})$ is an arbitrary function, and $M_{\text{eff}}(s_1, s_2, s_4)$ satisfies the equations (4.35) and (4.38), i.e.,

$$\frac{\mu s_1 s_4}{4G^2} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}},
(4.40)$$

$$(\partial_{s_2} \mu) \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} \mu) \partial_{s_2} M_{\text{eff}} = 0.$$

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

$$\frac{\mu s_1 s_4}{4G^2} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}},
(4.40)$$

$$(\partial_{s_2} \mu) \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} \mu) \partial_{s_2} M_{\text{eff}} = 0.$$

 μ is a function of s_1 and $M_{
m eff}$

$$rac{\mu s_1}{8}\left[(s_4)^2+\mathcal{Z}
ight]=rac{1}{2}(\partial_{s_2}M_{ ext{eff}})^2, \; ext{for arbitrary functions } \mathscr{Z} \; ext{of} \; s_1\equiv E^1 \; ext{and} \; M_{ ext{eff}}$$

$$\frac{\mu s_1 s_4}{4G^2} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}},
(4.40)$$

$$(\partial_{s_2} \mu) \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} \mu) \partial_{s_2} M_{\text{eff}} = 0.$$

 μ is a function of s_1 and $M_{
m eff}$

$$rac{\mu s_1}{8}\left[(s_4)^2+\mathcal{Z}
ight]=rac{1}{2}(\partial_{s_2}M_{ ext{eff}})^2, \ ext{ for arbitrary functions } \mathcal{Z} ext{ of } s_1\equiv E^1 ext{ and } M_{ ext{eff}}$$

Solve EOM

$$M_{\text{eff}} = M \text{ with } \partial_x M(x) + 2x \mathcal{R}(x^2, M(x)) = 0.$$

$$\frac{\mu s_1 s_4}{4G^2} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}},
(4.40)$$

$$(\partial_{s_2} \mu) \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} \mu) \partial_{s_2} M_{\text{eff}} = 0.$$

 μ is a function of s_1 and $M_{
m eff}$

$$rac{\mu s_1}{8}\left[(s_4)^2+\mathcal{Z}
ight]=rac{1}{2}(\partial_{s_2}M_{ ext{eff}})^2, \; ext{for arbitrary functions } \mathscr{Z} \; ext{of} \; s_1\equiv E^1 \; ext{and} \; M_{ ext{eff}}$$

Solve EOM

$$M_{\text{eff}} = M \text{ with } \partial_x M(x) + 2x \mathcal{R}(x^2, M(x)) = 0.$$

$$\mathrm{d}s^2 = \frac{1}{4}N^2 \mathcal{Z} \mathrm{d}t_s^2 - \frac{4}{\mu \mathcal{Z}} \mathrm{d}x^2 + x^2 \mathrm{d}\Omega^2,$$

$$N(x) = \exp\left(2\int x(\partial_{M_{ ext{eff}}}\mathcal{R})(x)\mathrm{d}x
ight)$$

$$\frac{\mu s_1 s_4}{4G^2} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}},
(4.40)$$

$$(\partial_{s_2} \mu) \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} \mu) \partial_{s_2} M_{\text{eff}} = 0.$$

 μ is a function of s_1 and M_{eff}

$$rac{\mu s_1}{8}\left[(s_4)^2+\mathcal{Z}
ight]=rac{1}{2}(\partial_{s_2}M_{ ext{eff}})^2, \ ext{ for arbitrary functions } \mathcal{Z} ext{ of } s_1\equiv E^1 ext{ and } M_{ ext{eff}}$$

Solve EOM

$$M_{\text{eff}} = M \text{ with } \partial_x M(x) + 2x \mathcal{R}(x^2, M(x)) = 0.$$

$$\mathrm{d}s^2 = \frac{1}{4}N^2 \mathcal{Z} \mathrm{d}t_s^2 - \frac{4}{\mu \mathcal{Z}} \mathrm{d}x^2 + x^2 \mathrm{d}\Omega^2,$$

$$N(x) = \exp\left(2\int x(\partial_{M_{\mathrm{eff}}}\mathcal{R})(x)\mathrm{d}x\right)$$

[CZ, Z. Cao, 2025]

$$\mathrm{Given}\quad \mathrm{d} s^2 = -F(x;m)\mathrm{d} t_s^2 + H(x;m)^{-1}\mathrm{d} x^2 + x^2\mathrm{d}\Omega^2, \qquad \longleftarrow \qquad F = -\frac{1}{4}N^2\mathcal{Z}, \quad H = -\frac{1}{4}\mu\mathcal{Z}.$$

$$F=-rac{1}{4}N^2\mathcal{Z},\quad H=-rac{1}{4}\mu\mathcal{Z}.$$

LQG motivated metrics: $\bar{\mu}$ -scheme LQBH

$$ds_{(1)}^2 = -f_1 dt^2 + f_1^{-1} dx^2 + x^2 d\Omega^2,$$

$$s_1 = E^1, s_2 = K_2, s_3 = \frac{K_1}{E^2}, s_4 = \frac{\partial_x E^1}{E^2}, s_5 = \frac{\partial_x s_4}{E^2}.$$

$$f_1 = 1 - \frac{2M}{x} + \frac{\zeta^2}{x^2} \left(1 - \frac{2M}{x} \right)^2,$$

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025

$$M_{\text{eff}}^{(1)} = \frac{\sqrt{s_1}}{2} + \frac{\sqrt{s_1}^3 \sin^2\left(\frac{\zeta s_2}{\sqrt{s_1}}\right)}{2\zeta^2} - \frac{\sqrt{s_1}(s_4)^2}{8} e^{\frac{2i\zeta s_2}{\sqrt{s_1}}},$$

OR

$$f_{1} = 1 - \frac{2M}{x} + \frac{4\zeta^{2}M^{2}}{x^{4}}$$

$$M_{\text{eff}} = \frac{\sqrt{s_{1}^{3}}}{2\zeta^{2}} \sin^{2}\left(\frac{\zeta s_{2}}{\sqrt{s_{1}}} \pm \frac{2\zeta\Xi}{s_{1}}\right) \mp \frac{s_{1}\sqrt{(s_{4})^{2} - 4}\sin\left(\frac{2\zeta s_{2}}{\sqrt{s_{1}}} \pm \frac{4\zeta\Xi}{s_{1}}\right)}{4\zeta}.$$

for arbitrary $\Xi(s_1, s_4)$

[CZ, Z. Cao, 2025]

Transition region connecting BH and WH

LQG motivated metrics: $\bar{\mu}$ -scheme LQBH

$$ds_{(2)}^{2} = -f_{2}dt^{2} + \mu_{2}^{-1}f_{2}^{-1}dx^{2} + x^{2}d\Omega^{2},$$

$$f_{2} = 1 - \frac{2M}{x}, \qquad \mu_{2} = 1 + \frac{\zeta^{2}}{x^{2}}\left(1 - \frac{2M}{x}\right).$$

$$M_{\text{eff}}^{(2)} = \frac{\sqrt{s_1}}{2} + \frac{\sqrt{s_1}^3 \sin^2\left(\frac{\zeta s_2}{\sqrt{s_1}}\right)}{2\zeta^2} - \frac{\sqrt{s_1}(s_4)^2 \cos^2\left(\frac{\zeta s_2}{\sqrt{s_1}}\right)}{8}$$

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

$$s_1 = E^1, s_2 = K_2, s_3 = \frac{K_1}{E^2}, s_4 = \frac{\partial_x E^1}{E^2}, s_5 = \frac{\partial_x s_4}{E^2}.$$

A metric without Cauchy horizon

$$ds_{(3)}^2 = -\bar{f}_3^{(n)}dt^2 + \bar{\mu}_3^{-1}(\bar{f}_3^{(n)})^{-1}dx^2 + x^2d\Omega^2,$$

$$\bar{f}_{3}^{(n)}(x) = 1 - (-1)^{n} \frac{x^{2}}{\zeta^{2}} \arcsin\left(\frac{2GM\zeta^{2}}{x^{3}}\right) - \frac{n\pi x^{2}}{\zeta^{2}},$$

$$\bar{\mu}_{3}(x) = 1 - \frac{4G^{2}\zeta^{4}M^{2}}{x^{6}}.$$

$$M_{\text{eff}}^{(3)} = \frac{\sqrt{s_1}^3}{2G\zeta^2} \sin\left(\frac{\zeta^2}{s_1} \left[1 + (s_2)^2 - \frac{(s_4)^2}{4}\right]\right)$$

[CZ, J. Lewandowski, Y. Ma, J. Yang, 2025]

$$m_o = rac{\zeta}{2} \left(rac{2}{\pi}
ight)^{3/2}.$$

$$\left(2GM\zeta^2
ight)^{1/3}\equiv x_{\min}.$$

Hayward metric

$$ds^{2} = -F_{H}dt^{2} + (F_{H})^{-1}dx^{2} + x^{2}d\Omega^{2}$$

$$F_H = 1 - \frac{2mx^2}{x^3 + 2\zeta^2 m}.$$

$$s_1 = E^1, s_2 = K_2, s_3 = \frac{K_1}{E^2}, s_4 = \frac{\partial_x E^1}{E^2}, s_5 = \frac{\partial_x s_4}{E^2}.$$

$$-\frac{\left(2\zeta^{2}M_{\text{eff}}+\sqrt{s_{1}}^{3}\right)\sqrt{(s_{4})^{2}-4F_{H}(M_{\text{eff}},\sqrt{s_{1}})}}{8s_{1}+2\zeta^{2}\left((s_{4})^{2}-4\right)}$$

$$=\frac{2\sqrt{s_{1}}^{5}\operatorname{arctanh}\left(\frac{\zeta\sqrt{(s_{4})^{2}-4F_{H}(M_{\text{eff}},\sqrt{s_{1}})}}{\sqrt{4s_{1}+\zeta^{2}((s_{4})^{2}-4)}}\right)}{\zeta\sqrt{4s_{1}+\zeta^{2}\left((s_{4})^{2}-4\right)^{3}}}\mp\frac{1}{2}\sqrt{s_{1}}s_{2},$$

Matter coupling: coupled to EM field

Classical theory:

$$A_{\rho} dx^{\rho} = \Phi dt + \Gamma dx,$$

$$\Phi = \Psi + \left(N \frac{\sqrt{E^1}}{E^2} + N^x\right) \Gamma$$

Covariant effective theory:

$$A_{\rho}^{(\mu)} dx^{\rho} = \left[\Psi + \left(N \frac{\sqrt{\mu E^{1}}}{E^{2}} + N^{x} \right) \Gamma \right] dt + \Gamma dx$$

[J. Yang, Y. Ma, CZ, 2025]

Conclusion and outlook

- The sufficient and necessary condition for covariance;
- (i) $H_{\rm eff}$ is independent of derivatives of K_1 ;
- (ii) $\{S(x), H_{\rm eff}[\alpha N]\} = \alpha(x)\{S(x), H_{\rm eff}[N]\}$ for any phase space independent functions α and N.
- Three solutions to the covariance equation:

Covariance equation for the effective Hamiltonian constraint;

$$H_{\text{eff}} = -2E^2 \left[\partial_{s_1} M_{\text{eff}} + \frac{\partial_{s_2} M_{\text{eff}}}{2} s_3 + \frac{\partial_{s_4} M_{\text{eff}}}{s_4} s_5 + \mathcal{R} \right], (6)$$

where \mathcal{R} is an arbitrary function of s_1 and M_{eff} , and M_{eff} depending on s_1, s_2, s_4 is a solution to:

$$\frac{\mu s_1 s_4}{4} = (\partial_{s_2} M_{\text{eff}}) \partial_{s_2} \partial_{s_4} M_{\text{eff}} - (\partial_{s_4} M_{\text{eff}}) \partial_{s_2}^2 M_{\text{eff}}, \quad (7a)$$

$$(\partial_{s_2}\mu)\partial_{s_4}M_{\text{eff}} - (\partial_{s_2}M_{\text{eff}})\partial_{s_4}\mu = 0.$$
 (7b)

Reconstruction of dynamics from geometry

$$\mathrm{d}s^2 = \frac{1}{4}N^2 \mathcal{Z} \mathrm{d}t_s^2 - \frac{4}{\mu \mathcal{Z}} \mathrm{d}x^2 + x^2 \mathrm{d}\Omega^2,$$

Thanks for your attention!