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First part: Non-perturbative quantisation of gravitational subsystem at
local null hypersurfaces (inside spacetime).

Second part: How loop quantum discreteness of geometry can create a
bound on radiated power.

Outlook: A framework (top-down, theory independent) for building local
amplitudes.
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Gravitational Subsystems on the Null Front:
The Case of the v-Palatini-Holst Action



Basic setup: Hamiltonian GR in finite regions

Spacetime region bounded by null surface:
m Compact spacetime region /.

m Bounded by spacelike disks M,, M; and
null surface .

m Null surface boundary ./ embedded into
abstract bundle (ruled surface)
P(r, %) ~R x G.

m Null generators 77 (2).

77(2)
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Null surface geometry

Signature (0++) metric.

ij=1,2. RN

Parametrisation of the dyad

— )
Gab = 6ije a€ b

e =08 el

77(2)

m Conformal factor 2 parametrizes
the overall scale.

m SIL(2,R)-Holonomy S?%, determines
the shape degrees of freedom.

= Fiducial background dyad ¢/,
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We consider a null strip ./ with two corners as our subsystem. No unique

clock along .. Convenient choice

Boundary condition at o4/ =%, U%_,
UDN, 2, Z) = £1,

Affinity proportional to expansion

d
972792 a
(@7 45, 99)9%
Parametrize physical clock % relative to

unphysical coordinate u.

1

oLV, 05 = —5

0, U = e~

The chronoton x becomes a quantum
reference frame (part of phase space).

N

77\(2)
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Diffeomorphisms with compact support that deform the null generators
are gauge redundancies.

- Remove them by only considering fibre preserving diffeos.
- Residual diffeomorphisms: angle dependent reparametrizations of .
- Canonical generator on phase space: Raychaudhuri equation.

Raychaudhuri equation N o
=+

d2 \\__//
O =205 0% X,
d%Q (xen €
SL(2,R) holonomy N
d i, T
—S5 = ((pJ—i— (O'X +CC.))S.
du U=-1

SL(2,IR) generators split into U(1) complex structure J and shear generators:
[J,X]=-2i X, [J,X] = +2i X, (X, X]=iJ.
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Phase space and action

In D = 4, there are two Lorentz scalars that we can build from the
curvature tensor:

R[A,e] = F*P , [Ale,"¢,”,
* 1 « v a
R [A,e] = 55 B Faﬂab[A]eu e,,b ~ 0.

Therefore, in the first-order formalism, there are two coupling constants at
linear order in the curvature,

1 4 1.
6nC /ﬂd U[R— :YR } + boundary terms.

G is Newton's constant, ~ is the Barbero-Immirzi parameter.
How does ~ affect the quantisation of charges and radiation?
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Phase space and symplectic structure

Starting from the ~-action for GR, we obtain null symplectic structure

Oy = l d’v, (ada — cc.) +
2 o

+ / dSvOdelx + l / d*v, (bdll_) — cc.) +
n 2y

+ / d*v, Troz,m (1SS ™) .
n

Geometric interpretation:
Area operator becomes number operator: Q2

|‘7‘i = 8myG aa.

Expansion turns into number operator: £ 0% = 87 bb.

. _ 1 d
Chronoton modes: p, = g5 1+
Last line: su(1,1) shape modes.
GR phase space: these variables plus constraints (all polynomial).

0? (a constraint).
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New canonical variables

Among the canonical variables are shape modes S € SL(2,R) ~ SU(1,1).

m The conjugate momentum is I 5 € su(1,1).
m Utilize (fermionic) bosonic representation

1
up = mawp) = 3 (Tawp + Tpw4) -
m Fundamental Poisson brackets

{WA(uv C7 6)7 wB(ul7 C7 6)} = +€AB5/V(U‘ - ul7
{EA(Uﬁ C: E)v%B(UI, C7 E)} = _EABJ./V(U/ - ul7

m Reconstruction of S € SU(1,1)
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There are first-class and second-class constraints. Among the first-class
constraints is the Hamiltonian constraint, which is

H[N]:%//VdSvoN(l_)l')—cc.)—&—//Vdsvopx(N)'(—i—N)—i—

1
+ 5/ d*v, N (WA(,Z)A . —QAQA +7jAgA) .
P

Basic idea:

The Hamiltonian H[N] generates a Virasoro algebra.
See also recent results by Freidel and Ciambelli.

Idea: Utilize CFT methods to quantize this algebra.
Mode expansion, positive (negative) frequency modes, Fock vacuum etc.

Problem: What selects the statistics of the oscillators?

Hint: The abelian current j = :74w*: is the square root of the
SU(1,1) Casimir.
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Ashtekar-Lewandowski vacuum

Introduce tessellation of null surface cuts (thickend null rays).
m Smearing (py, x, b, ma,w? ...)
P
Px(i) = A dZvopX: ?4
X(Z) = X(‘T’L)7 z; IS %iv etc. \‘\\7'

Truncation to m"/

m Mode expansion N plaquettes

oo

. 1 -\ —inu
X(Z)ZE Z Xn(i)e >

n—=—oo

Infinitely many

Y,,-modes

—inu

p,((i):# S pealie

n=—oo

Ashtekar-Lewandowski (no geometry) vacuum for all modes, e.g.

[ (0)[0) =p W @)[0) =~ =0, n>0i=1...,N.
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SU(1,1) Casimir



SU(1,1) Casimir and central charge

Canonical momentum dual to the shape modes:
O=LJ+cX+eX €su(l,1)
SU(1,1) Casimir in terms of the geometric data:

2 1 4092 2\
L CC_—(1671'7G)QQ (0" —4(1+~7)07).

What we find is:
m Bose statistics for (w4, w?”, b, b):
- CFT has negative central charge.

- Both L2 < céand L? > cc possible.
- Butresulting CFT is non-unitary.

m Fermi statistics for (74, w™, b, b):
- CFT has positive central charge.
- Only L? > cz infra-Planckian modes occur.
- violation of unitarity can be avoided.
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Luminosity bound

On physical grounds (unitarity), we are led to choose Fermi statistics.
Itis easy to check that this implies the inequality

92 —4(14~+*)oa > 0.
For semi-classical states, we should thus get (as expectation values)
o7 1 1
92 T 414427
This must hold for all null hypersurfaces.

Caveat: We do not have constructed such semi-classical states explicitly.
In here, we merely assume they exist.
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Luminosity bound from asymptotic limit of local bound

Utilize Bondi expansion to characerize gravitational radiation.

m Bondi mass loss formula

1

_ d%v. (0 500)
G Jsacs, 077

MB(U) =
m Falloff conditions vacuum GR
¢ (u,¢,0) A
5

T(e) (u,’l‘, C>E) = + @(r_Q)a

- 2
ﬂ(g)(u,’l‘, C>C) = _; —|—@(7’_2). 2\
GR+matter

Asymptotic luminosity from quasi-local observables

N 4C5 . 5-(2) (u7 T, C7 E)a—(l) (U, r, <7 5) 05 1
Z(u,¢, () = ?Tlggo (90 (1,7, ¢, Q)2 = G1+44%

In the S-matrix approach, the 6(r~—1) term in ¥, is a commuting c-number. In the
quasi-local quantisation of gravity, it becomes a g-number akin to LQG area operator.
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Planck scale luminosity

Humanity has come close to observing such power

5
P =< ~3,63x 102 W,
G
Zrcar ~ 3,6 x 10 W.
GW150914

Side remark: Only in D = 4 spacetime dimensions, the Planck power
(luminosity) is independent of &

2 D—4 2D+2
mpc hD—-2¢D-2
gp = = P
33 GD-—2
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Top-Down Approach:
Local Amplitudes from Local Subsystems



How to get rid of the Wheeler-De Witt (WDW) equation

m Initial data: three-metric h,;, and
extrinsic curvature #%° ~ K,; ~ hyp.

m Constraints #Z'[h, 7] = 0 and
#,|h, 7] = 0 generate gauge
redundancies on phase space.

m Gauge redundancies: states on X,
¥,, ...are gauge equivalent.

space

m Basic idea: Characterize the entire gauge equivalence class [V, ] by
pushing the time-evolution (gauge) to its extreme.

m The boundary of the future Cauchy development of ; is a null
boundary. We saw how the problem simplifies. Less constraints.
Perhaps even physical consequences (luminosity).

[ Ashtekar, Speziale, Reisenberger, Freidel, Donnelly, Ciambelli, Leigh, Geiller, Pranzetti,
.... Donney, Grumiller, Fiorucci, Ruzziconi, ..., Riello, Hoehn, Carrozza, ..., Barnich, Prabhu, Chandrasekaran, Flanagan, Compére, ...]
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Promise of the Wheeler-De Witt equation: no time evolution, all
dynamics to be extracted from physical states.

m One incarnation: Covariant LQG,
spinfoams

W[\I}B/ﬂ] = <woutlp|win>'
m Kinematical states on a null slab . ; !
IVAA/> € ‘%/edge ® ‘%bulk ® ‘%:dge' T » < /‘QA/A>

(47 g (out)|

B Assuming existence of tip states
T4, vacuum states |Q4 ,,) and the
projector P, we can formally Nk
introduce local amplitudes. X

m Basic idea: Add thin strips to upper and lower cones. Data on the in and out
cones are diffeomorphic. Upon projecting kinematical onto physical states,
we obtain proposal for amplitudes.

W(v(in) = y(out)) = (2, 1| & (y(out), | [Ply(in), T | @ |2, ).
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Conclusion



Take home messages

m Non-perturbative quantisation of null initial data at finite distance.

- Spectra for geometric observables reproduce LQG discretenss of area.
- Difference of the area at initial and final cut: number operator.
- Turning on ~, we activate otherwise irrelevant SU(1, 1) representations.

m Local amplitudes from gluing local subsystems on the light front.
m We strengthened earlier conjecture on Planck luminosity bound.
m Results implicitly proof that r — oo and % < 0 may not commute.

QLQG h—0
I
I
|
I
r — 00 :
|
. asymptotic
graviton quantisation
S-matrix

subregion
phase space

T — 00

Jradiative
phase space
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