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Non-seperable Hilbert spaces are large and unwieldy objects ill
suited to most physical situations.

Nevertheless, there are situations where this largeness is a virtue.

I will describe two examples in the context of free quantum fields
on flat spacetime where non-seperability helps alleviate problems.

1. In the first example quantum states at different times turn out
to live in unitarily-inequivalent (separable) Hilbert spaces. In this
context, we shall see that non-separability enables a useful
articulation of unitary evolution between such states.
2. In the second, non-seperability removes the intuitive tension
between Lorentz transformations and spacetime discreteness by
enabling a unitary representation of Lorentz transformations in the
context of quantum fields living on discrete spacetime lattices.

Both examples involve free scalar field theory on flat spacetime
re-expressed in a diffeomorphism invariant formulation known as
Parameterized Field Theory.



Example 1: PFT and standard Fock Repn
On n+1 d flat sptime with inertial coordinates XA

S0[φ] = −1
2

∫
dn+1XηAB∂Aφ∂Bφ.

‘Parameterize’: XA = XA(x0, x1, .., xn):
S0[φ] = −1

2

∫
dn+1x

√
det ηηαβ∂αφ∂βφ,

ηαβ = ηAB∂αX
A∂βX

B

Consider above action also as fnal of ‘new’ scalar fields XA(x) :
S [XA, φ] = −1

2

∫
dn+1x

√
det η(X )ηαβ(X )∂αφ∂βφ,

Varying XA, φ in S yields eqns of motion equivalent to those from
varying φ in S0. S is generally covariant

n + 1 decomposition: phase space (XA,PA, φ, π), constraints
CA = PA + hA(X , φ, π), Lagrange multipliers NA (“lapse-shift”).

Phase sp variables are fns on n dim space with coordinates
(x1, .., xn). Focus on XA(x1..xn).

XA(x1..xn) define n+1 inertial coordinates at every point p in n
dimnal space i.e. a point P in flat sptime for every p. Hence, an
embedding of an n-dim manifold as a spatial slice of n+1 d flat
sptime.





Quantization
Quantum constraints: ĈAΨ = 0 = (P̂A + hA(X̂ , π̂, φ̂)Ψ = 0

Represent X̂A by multiplcation, P̂A(x) := 1
i

δ
δX a(x) .

ĈAΨ = 0 ⇒
(
1
i

δ
δXA + ĥA

)
Ψ(X ,matter) = 0

Functional Schrodinger Eqn

The standard Fock quantization is in H’berg picture:
We know φ̂ everywhere on sptime in terms of standard Fock space
annhilation, creation operators. Hence, we know operators φ̂X , π̂X
on any slice X . Fix an initial slice XA

0 .
If operator evoltn X0 to arbitrary X is unitarily implemented:

ÛX φ̂X0 Û†X = φ̂X ÛX π̂X0 Û†X = π̂X
Then fnal Schrod pic is (X - dependent) inverse unitary image of
H’berg pic. Slice dep inverse unitary image of slice-indep H’berg
state then satisfies fnal Schro eqn. This is what happens in 1+1d.

For higher dimn evoltn not unitarily implemented (generically), no
fnal Schro pic, no slice dep states in Fock space. Dirac quantzn
seems to fail in simplest model field theory...bad news for canonical
QG?



Algebraic states
Fix initial slice X 0 = 0,X i (x) = x i with matter phase space data
(φ, π). Consider standard Weyl algebra generated by operator
correspondents of elements W (α, β) = e i

∫
α(x)π(x)−β(x)φ(x)

Linear canonical transformations leave algebraic structure invariant.
Classical evolution to any slice XA(x) is linear canonical transf.
Defines slice dep automorphism AX of Weyl algebra.
Fock repn provides a repn of Weyl algebra. Fock vacuum |0〉 defines
PLF ψ0 via vacuum expectation value of algebra elements.
For any element Ŵ of algebra can define a new PLF ψX via pull
back of the PLF ψ0 by AX :
ψX (Ŵ ) = ψ0(AX (Ŵ ))
Every such PLF ψX defines a GNS Hilbert space HX and a state
|0,X 〉 ∈ HX s.t. the exp value of algebra elements in this state
reproduces the PLF. For 1+1 d these Hilbert spaces are unitary
images of Fock space and the states are the Schrodinger states. For
higher dimns these Hilbert space repns are unitarily inequivalent to
Fock repn for generic slices X and as we saw we have an obstruction
to Dirac quantization of PFT.



Non-seperability to the rescue
Define ‘polymer’ repn: X̂A(x)|F 〉 = FA(x)|F 〉 with FA(x) smooth,
〈F1|F2〉 = δF1,F2 . So in this repn P̂A is not well defined but its
exponential is.

Define the non-seperable Hilb space Hkin =
⊕

F |F 〉 ⊗ HF

Sum is over all FA which define slices in flat sptime. Natural inner
product is induced from that on polymer Hilb space and on HF .

Can be shown that on Hkin suitable generalizations of finite
transformations generated by constraints act unitarily.

Physical states can be constructed by averaging over these unitary
transformations. Group averaging inner product space of physical
states yields Hilbert space Hphys .

Classical Dirac observables corresponding to standard creation,
annihilation modes exist.

Their quantum repn on Hphys can be shown to be unitarily equiv to
standard Fock space repn!

Could there be situations in qft in cs where non-seperability might
help articulate a useful notion of unitarity?



Example 2: LQG type quantization of 1+1 PFT

In 2d, �φ = 0 ⇒ φ(XA) = φ+(X+) + φ−(X−)

where X± = X 0±X 1

2 are light cone coordinates.

In phase space, define ‘light cone’ combinations from (XA,PA, φ, π):

X±(x) = X 0(x)±X 1(x)
2 P± = P0±P1

2 and Y± = π±φ′
2 .

Y± are proportional to ∂φ
∂X± on shell and capture left and right

moving matter modes.

Also define suitable light cone combinations of constraints C+,C−
which depend only on +,− phase sp variables. Turns out that
evolution generated by C+ corresponds to action of diffeos d+ on the
+ variables, similarly evolution by C− to diffeos d− on − variables.

Classical generators of Lorentz transf exist and commute with
constraints.



As we shall see in LQG type quantization, kinematic states
admit the interpretation of quantum matter on discrete
cauchy slices, physical states admit interpretation of quantum
matter on discrete sptime lattice.
We are interested in unitary implementation of Lorentz transf
on these discrete structures

In prtclr, an ‘Area operator’ (equiv to length in 1+1 d) exists
with discrete spectrum. Hence from LQG point of view,
despite key differences between LQG and this simple model, it
is also interesting to examine intuitive tension between boosts
and area discreteness in this model.

Hence we briefly digress with some general remarks on
Lorentz transformations of classical area in this model (as well
as on local lorentz transformations of area in the context of
canonical General Relativity).



Using properties of diffeos and isometries, can see that
A(φ(S)) = A(S). “Area is Lorentz Invariant”
(Remark: Area of small enough surface for arbitrary gab is LLI!)

Explicitly, in 1+1 PFT:



Quantum States:
In quantum theory X±(x) become operators. In LQG type repn
they have discrete spectra: Fix a real, positive number λ , then
X̂+(x)→ λZ and X̂−(x)→ Z/λ
Area Spectrum indep of choice of λ, spectrum is discrete.
Left and Right moving scalar field degrees of freedom admit
suitable LQG type repn with integer valued quantum numbers.

The kinematic Hilbert space Hλkin is spanned by uncountable basis
of “charge network’ states on 1d graphs with edges labelled by
embedding charges and matter charges:



Action of boosts on Charge Network States
Classically, finite boosts act only on the embedding sector through:
(X+(x),P+(x))→ (αX+(x), 1αP+(x)),
(X−(x),P−(x))→ ( 1

αX
−(x), αP−(x)).

This action commutes with that of the constraints.

Quantum mechanically, these transformations are not defined on
fixed λ sector. Hence we introduce an even larger degree of
non-seperability by summing over all these sectors:
Hkin := ⊕α>0Hαkin.

Action of boost is then:



This action of boosts can be shown to be unitary. Because of
explicitly boost invariant expression of classical area, turns out that
in quantum theory Area operator is boost invariant:
ÛαÂ(σ)Û†α = Â(σ)
Thus, the larger degree of nonseperability, due to sum over fixed λ
sectors, resolves tension between discrete areas and boost inv.

What about Physical States ?
C± generate diffeos d± acting on ± fields.

d± act unitarily on charge nets similar to diffeo action on spin nets
in LQG. Physical state space can then be constructed via Group
Averaging over (unitary) action of all d+, d−.

A physical state is then a sum over kinematic charge net states.
Each summand defines discrete Cauchy slice with quantum matter.
Because the ± diffeos are represented in anomaly free manner, all
these different slices with quantum matter fit consistently into a
single spacetime lattice with quantum matter.



Thus, Physical States admit the interpretation of Quantum Matter
on a light cone lattice with spacing λ, 1/λ along the +,− null
directions:



Lorentz transformations map physical state ψλ on one lattice to
ψλ′ on a ‘boosted lattice’

Grp Averaging does not change the value of λ. Each fixed λ sector
is seperable. Tension between spacetime discreteness and LI is
resolved by non-seperability due to admission of all λ sectors.



Some Remarks:

Since each fixed λ sector lives on a single sptime lattice and different
λ sectors are related by unitary transformations, we could take a
view that each fixed λ sector corresponds to physics seen by fixed
observer and unitary transf just correspond to same physics seen by
different boosted observers. From this point of view, physical state
space non-seperability is related to observer perspectives.

Recall that in this model area is classically and qmly LI. In the case
of gravity and LLI, there are too many complicated issues in the
quantum theory and it is difficult to see how the LLI of area of small
surfaces could emerge.

Note that the beautiful work of Carlo and Simone focuses on
Lorentz contraction, hence on surfaces which are defined by
different simultaneity cuts of sptime world sheet of physical object
-these surfaces are not boosted images of each other.



In Conclusion

While Non-Seperable Hilbert spaces might alleviate some
problems, ALL problems are alleviated by Non-Seperable Friends:


