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Overview

Cauchy-Riemann (CR) geometry: Study of real hypersurfaces in Cn

CR geometry and Lorentzian (conformal) geometry (General relativity)

both arose at the beginning of the twentieth century with the work of

Poincaré, Cartan...

However, their interaction only slowly understood from the 1960ies to

the mid-1970ies.

Hinted in the works by Robinson, Trautman, Kerr, Newman, Penrose...

in their investigation of the geometry of light rays

Two schools:

Oxford school: Penrose, Sparling, LeBrun, Mason... (twistorial

ideas)

Warsaw school: Trautman, Tafel, Lewandowski, Nurowski... (CR

realisability)
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Jurek's contributions

Thesis: Zastosowanie geometrii Cauchy�Riemanna do badania pola

grawitacyjnego

On the Fe�erman class of metrics associated with a three-dimensional CR

space. Lett. Math. Phys. 15 (1988), no. 2, 129-135.

(with Paweª Nurowski) Algebraically special twisting gravitational �elds and CR

structures. Classical Quantum Gravity 7 (1990), no. 3, 309-328.

(with Paweª Nurowski, Jacek Tafel) Einstein's equations and realizability of CR

manifolds. Classical Quantum Gravity 7 (1990), no. 11, L241-L246.

(with Paweª Nurowski) Cartan's chains and Lorentz geometry. J. Geom. Phys.

7 (1990), no. 1, 63-80.

Twistor equation in a curved spacetime. Classical Quantum Gravity 8 (1991),

no. 1, L11-L17.

(with Paweª Nurowski, Jacek Tafel) Algebraically special solutions of the

Einstein equations with pure radiation �elds. Classical Quantum Gravity 8

(1991), no. 3, 493-501.

(with Jacek Tafel, Paweª Nurowski) Pure radiation �eld solutions of the

Einstein equations. Classical Quantum Gravity 8 (1991), no. 4, L83-L88.

(with C. Denson Hill, Paweª Nurowski) Einstein's equations and the embedding

of 3-dimensional CR manifolds. Indiana Univ. Math. J. 57 (2008), no. 7,

3131-3176.

[2/15]



Robinson congruence

Minkowski space M = fu; z ; z̄ ; rg with null v.f. k̃ = @
@r
:

g̃ = 2�dr + 2(r2 + 1)�1�1̄

� = g̃(k̃ ; �) = du � iz̄dz + izdz̄ ; �1 = dz :

Twisting shearfree congruence of null geodesics K̃ generated by k̃ :

¿
k̃
g̃jhk̃i? / g̃jhk̃i? ; � ^ d� 6= 0 :

Robinson structure (Ñ; K̃ ): involutive totally null complex 2-plane

(�-plane) distribution

Ñ = Ann(�; �) ; Ñ \ Ñ = C
 hk̃i ; [Ñ; Ñ] � Ñ :

Spinor �eld �̃A
0

: Ñ = hõA�̃A
0

; �̃A�̃A
0

i for any spinor frame õA; �̃A

�̃A
0

�̃B
0

rAA0 �̃B 0 = 0 () Ñ involutive

Contact Cauchy�Riemann (CR) structure H(1;0) on the leaf space

M = fu; z ; z̄g of K:

H(1;0) = H(0;1) := Ann(�; �) ; H = <(H(1;0)) := Ann(�) ;

HyperquadricM = f(z ;w) 2 C2 : =(w) = jz j2g
F = � ^ � satis�es vacuum Maxwell equations: dF = d ? F = 0
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The Kerr congruence

Kerr metric (1963): Petrov type D vacuum spacetime M̃ = fu; #; �; rg
with parameters a and m:

g̃ = 2�
(
dr + a sin2 #d�+

(
mr

r2+a2 cos2 # �
1
2

)
�
)
+ 2(r2 + a2 cos2 �)�1�1̄ ;

� = dt + a sin2 #d� ; �1 = d#+ i sin#d� :

Twisting shearfree congruence generated by k̃ = @
@r

Robinson structure: Ñ = Ann(�; �)

Contact CR structure H(1;0) on the leaf spaceM = fu; #; �g of K:

H := Ann(�) ; H(0;1) := Ann(�; �1) :

Note �1 = d#+ i sin#d� satis�es �1 ^ d�1 = 0, i.e.

�1 ^ dz = 0

for some smooth z :M! C s.t. X (z) = 0 for any X 2 ΓH(0;1)

z known as Kerr coordinate (or CR function)

Two CR functions ) (M;H(1;0)) realisable as a real hypersurface in C2.
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Classical results of the Golden Age

Conformal Lorentzian 4-manifold
shearfree cong.
 ! CR three-manifold

Mariot (1954), Robinson (1961) Theorem: Solutions to the

vacuum Maxwell equations (dF = d ? F = 0) give rise to shearfree

congruences of null geodesics. `Conversely', any analytic shearfree

congruence gives rise to a solution to the vacuum Maxwell equations.

(See also Tafel (1985), Holland�Sparling (2013))

Goldberg�Sachs (1962) Theorem: For a spacetime metric that is a

solution to the vacuum EFE, the Weyl tensor is algebraically special if

and only if there exists a shearfree congruence of null geodesics.

Kerr Theorem (Penrose (1967)): Any analytic shearfree congruence

of null geodesics determines and is determined a single holomorphic

function of three complex variables.
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Kerr surfaces in Twistor space

Kerr theorem (Penrose (1967))

Any analytic shearfree null geodesic congruence in Minkowski space M

locally gives rise to a complex (Kerr) surface in TC (2023) space PT.

Conversely, any such congruence arises in this way.

Twistor space PT �= CP3: space of �-planes in C
M

Flat CR manifold PN = S2 � S3=Z2 � PT: space of null geodesics

Shearfree null geodesic congruence K =M \N where N is a foliation

by �-planes

M

C
M

K

N

PT

M3
K

M2
N

PN
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Lift of CR structures

Lewandowski�Nurowski (1990):

CR manifold (M;H(1;0)), adapted coframe (�; �1; �1̄): d� = i�1 ^ �1̄

Trivial bundle M̃ =M� R with �bre coordinate �

Choose any nowhere-vanishing function Ω̃ and semi-basic one-form �̃

on M̃, i.e.

�̃ = d�+ �̃1�
1 + �̃1̄�

1̄ + �̃0� ; for some functions �̃1; �̃0 on M̃.

Then

g̃ = Ω̃2
(
4��̃+ 2�1�1̄

)
;

is a metric on M̃ and k̃ = @
@�

generates a twisting shearfree

congruence of null geodesics.

Impose (subsystem) of vacuum EFE: �-dependence integrated out

Ω̃2 = e' sec2(�+  ) ; �̃1 = �
(0)
1 + �

(�2)
1 e�2i� ;

�̃0 = �
(4)
0 e4i� + �

(2)
0 e2i� + �

(0)
0 + �

(�2)
0 e�2i� + �

(�4)
0 e�4i�

where ',  , �
(i)
1 , �

(i)
0 are functions onM satisfying PDEs.

Hill�Lewandowski�Nurowski (2008): smooth metric Ω̃�2g̃ on

S1-bundle. Any relation to Fe�erman's construction?
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Fefferman space Fefferman (1976), Lee (1986), �ap�Gover (2008)

(M;H(1;0)) CR 3-manifold with canonical bundle C := ^2Ann(H(0;1))

Density bundle E(1; 0) := C�
1
3 , E(w ;w 0) := E(1; 0)w 
 E(1; 0)w 0

M̃ := E�(�1; 0)=R>0

(M;H(1;0)), H = <(H(1;0))

$
� 2 Γ(Ann(H)), Levi form h� := d�jH

Webster connection r� on TM

Induced connection !̃� on M̃

Webster�Schouten scalar P�

Fe�erman metric

g̃� := 4$�� �
(
!̃� � 1

3
P��

)
+ $�h�

� 7! �̂ = e'�  g̃
�̂
= e'g̃�

 conformal structure c̃

conformal Killing k̃

Fe�erman space (M̃; c̃; k̃)
��1

ei���1

trivialisation �

� = ��

� = 0

� = �
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Algebraically special spacetimes and
Fefferman's conformal structure

Can we �nd conformally invariant conditions such that a spacetime

with a shearfree congruence is locally conformally to a conformal

structure on Fe�erman's circle bundle?

Theorem (TC (2023))

Let (M̃; c̃) be an algebraically special (conformal) spacetime with repeated

gravitational principal null direction hk̃i, i.e. W̃(k̃ ; ṽ ; k̃ ; �) = 0 for any

ṽ 2 Γ(hk̃i?). Suppose that the Bach tensor satis�es B̃(k̃ ; k̃) = 0. Then

(M̃; c̃) is locally conformally isometric to a perturbed Fe�erman conformal

space, i.e. any metric in c is conformally related to

g̃
�;�̃

= g̃� + 4� � �̃

for some Fe�erman metric g̃� and semi-basic one-form �̃. In addition, the

components of �̃ have Fourier expansions

�1 = �
(0)
1 + �

(�2)
1 e�2i� ;

�0 = �
(4)
0 e4i� + �

(2)
0 e2i� + �

(0)
0 + �

(�2)
0 e�2i� + �

(�4)
0 e�4i� :
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Pure radiation metrics

Lewandowski (1988): Any Fe�erman conformal structure that

contains a (local) Einstein metric must be conformally �at.

But how about perturbed Fe�erman spaces?

TC (2023): Pure radiation metric as perturbed Fe�erman metric:

(M̃; c̃; k̃)

(M;H(1;0))

� = ��

� = � �

2

� = 0

� = �

2

� = �

density �

��1

+ CR data �
(i)
0 , �

(i)
1

perturbed Fe�erman metric g̃
�;�̃

CR PDEs

pure radiation metric

g̃ = sec2 � � g̃
�;�̃
, � 6= ��

2

R̃ic
g̃

= Λg̃ + Φ�2

Conf. in�nity

Conf. in�nity

�i��1

i��1
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Some CR analysis

Subsystems of vacuum EFE reduces to CR PDEs that have clear

interpretations in terms of the analytic properties of CR geometry

Kerr (1963), Lewandowski�Nurowski�Tafel (1990), Mason

(1998): (M;H(1;0)) must admit a complex-valued 1-form

! 2 Γ(Ann(H(0;1))) such ! ^ d! = 0.

Hill�Lewandowski�Nurowski's Lemma (2008)

(M;H(1;0)) admits a (local) CR function f , i.e. X (f ) = 0 for all

X 2 Γ(H(1;0)) if and only if there exists a complex-valued 1-form

! 2 Γ(Ann(H(0;1))) such ! ^ d! = 0.

Theorem (TC (2023))

(M;H(1;0)) locally admits a CR function if and only if there exists a

solution �� to the Webster�Weyl equation:

r��� � i���� � A�� = 0 : (1)

Here, r is the Webster connection with Webster torsion A��.

Think of (1) as a CR analogue of Einstein�Weyl equation (or

quasi-Einstein equation - another of Jurek's contributions!) [11/15]



Realisable CR structures and Einstein
metrics

Theorem (Lewandowski�Nurowski�Tafel (1990), Hill�Lewandowski�Nurowski (2008))

If a CR 3-manifold (M;H(1;0)) lifts to an Einstein metric onM� R then

it is realisable as a real hypersurface in C2.

Lewy (1957), Niremberg (1974), Jacobowitz�Trèves

(1982)...: Not every CR three-manifold is realisable!

Jacobowitz (1987): (M;H(1;0)) is locally embeddable if and only if it

admits a transverse complex-valued vector �eld ` preserving the CR

structure, i.e. ¿`H
(1;0) � H(1;0).

Curry�Ebenfelt (2019), TC (2023): Equivalently, there exists a

density � 2 Γ(E(1; 1)) that satis�es

r�r�� + iA��� = 0 : (2)

(1) is the non-linear analogue of (2)

See also: Tafel (1985), Jacobowitz (1987,2020),

Holland�Sparling (2013)... for further results regarding CR

embeddability.
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Story in higher dimensions

Hughston�Mason (1988): 2m-dimensional generalisation of the Kerr

and Robinson theorems in the language of pure spinors:

rX � / � ; for all v.f. X s.t. X � � = 0,

i.e. N� := fX 2 Γ(CTM) : X � � = 0g involutive maximally totally null

Mason�TC (2010): Conformal Killing�Yano two-forms and applications

to Kerr�NUT�Ad(S) metrics

Nurowski�Trautman (2005), Fino�Leistner�TC (2023):

Nearly Robinson manifold: conformal Lorentzian manifold admitting a

null geodesic congruences (not necessarily shearfree) whose leaf space

is an almost CR manifold

TC (2019): Obtained all solutions to vacuum EFE for Lorentzian

manifolds of dim 2m > 4 admitting a twisting shearfree congruence of

null geodesics with a weak algebraically degenerate Weyl tensor.

Includes Taub�NUT�(A)dS metrics

TC (2025): Formulation in terms of perturbed Fe�erman spaces
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Hypersurface twistors Penrose, Sparling, LeBrun, Mason...

Another aspect of the interaction between CR geometry and general

relativity: The space of light rays of a conformal spacetime (M̃; c̃).
Following Mason (1985):

Projective spinor bundle PS̃+ ! M̃ with S2-�bers: at a point x 2 M̃,

a point z 2 PS̃+x corresponds to an �-plane Ñx (z) in
CTxM̃

Twistor distribution D is the (conformally invariant) tautological

complex rank-three distribution on the total space of PS+:

Any �-plane Ñx (z) lifts to a horizontal two-plane N(x ;z) in PS
+
(x ;z)

independently of the choice of the Levi-Civita connection. Then

D(x ;z) = N(x ;z) � h
@
@z̄
i.

D \D = C
 K where K is tangent to the null geodesic spray K.

Quotient PN = PS̃+=K is the real �ve-dimensional space of null

geodesics

D is involutive if and only if (M̃; c̃) is conformally �at!

But can be �xed...
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Choose a hypersurface H̃ in M̃

View the restriction PS̃+jH̃ as a cross-section of PS̃+ ! PN

Now, Dj
M̃

is an involutive complex rank-two distribution, so de�nes a

CR structure on PS̃+jH̃
Its pull-back to PN de�nes a CR structure of Levi signature (1; 1)

(Small) drawback: CR structure depends on the choice of

hypersurface...

However, for algebraically special spacetimes satisfying (subsystems of)

the vacuum EFE with twisting shearfree congruences, can use the

perturbed Fe�erman approach:

two distinguished hypersurfaces available (conformal in�nities);

a distinguished section of PS+ (determined by the congruence) that

intersect PS+jH̃ in a CR 3-manifold.

Thank you for your attention!
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