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Motivations
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- (Simplified) big picture:
the ones we see in nature are black holes or regular black holes? 

1)Previous analyses in the literature focus only on a portion of  the 
phase space of  the dynamical system corresponding to the Ori model.
Importance of  the initial conditions for the perturbation.



• a)It seems that regular black holes commonly imply the presence of  the CH

• b)It is a crucial theoretical open problem and an open problem of  internal ‘‘consistency’’

• c)It is related to the destiny of  the  cosmic censorship conjecture

• d)It is related to geodesic completeness in a (regular) black hole spacetime

• e)It can tell us something about the astrophysical viability of  (regular) black holes

Motivations
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2)In general, why studying the CH instability? Can we cure it?

Interrelated problems



CH instability in a nutshell

- The CH is a surface of  infinite blueshift
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Cauchy horizon

Collapsing
star

Event horizon

!

Incoming photon

Free falling observer
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Then, at the meeting point:
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The system composed by (regular) black hole + incoming photon
faces an ultraviolet catastrophe.

,  (Units: ; = 1, => = 1)



CH instability and mass inflation
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Incoming flux:
incoming perturbation.

Outgoing flux:
portion of  the originally incoming perturbation backscattered
by the black hole’s curvature near the CH. 
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A curvature singularity builds up at the CH

Advaced Eddington-Finkelstein coordinates #, ., 7, 8 , with # = 9 + .∗:
;<, = −-± ., #± ;#±

, + 2;.;#± + .,;Ω, where -± = 1 − 2!±(., #± )/.

General Relativity and Reissner-Nordström
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Boundary condition at the event horizon: 3% # = 34 −
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Ori model

1° Dynamical equation:  "̇ # = %
&

'
()

*
for "(#)

2° Dynamical equation:  %
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Notation:
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,    " # ≡ 7ℎ9:: ;<7=>=<?,    @̇ ≡ A@/A#

- Degrees of  freedom: " # , 34 #

- Free parameters: 3D, E, ;

- Independent variable: #

Assigning a spacetime F G ↔ ( G ,
and initial conditions " #I , 34 #I ,
the system and its evoluton are fully determined

Incoming perturbation: continuos flux of  radiation
Outgoing perturbation: spherical shell Σ of  radiation
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Phase space for the CH (in)stability of  regular black holes

Bardeen solution (also Reissner-Nordström) Solution from asymptotically safe collapse
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Phase space for the CH (in)stability of  regular black holes

1° eq.  "̇ # = 0
quasi - Fixed points of  the dynamical system:

2° eq.  &̇ # = 0

Analytical solutions around the fixed points, using Frobenius ansatz

Numerical integrations of  the full equations

Step 1

Step 2

Step 3
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Repulsor and mass inflation

! " = 1 − 2'(")
(") + ,))./)Bardeen
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Attractor and mass inflation avoidance
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AS-collapse

5 10 50 100
-4

-2

0

2

4

20 50 100
0.05
0.10

0.50
1

5
10

5 10 50 100
0.1

1000.0

107
1011
1015
1019
1023

.1 2 ⋍
"40

6( [6(2) − 1]

:1 2 ⋍
"40

12( )*+ ;/24< &

=1 2 ∝ 2?<

Cluster II Ending State

Cluster II

Cluster II

6(2) ≡
;/[1 +∑BCD ;B)*+B(2)]

2<

E4 = 1

./ = 1

F = 1

G = 12

( = 0.167

:1 2 ~L(./) at all 2



11/12

Singularity strength: traversability of  the CH 
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Conclusion and outlook
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- Quenched divergences, stability, weak singularities, traversability, geodesic completeness at the CH 
may be possible. Then perturbed regular BH may actually remain regular. 

Results

However

Possibilities and Outlook

- Application of  the Ori model to regular BHs imply non-trivial assumptions

Conclusion

- Mass inflation at the CH seems not universal

- In our solution with stable mass function, the Kretschmann scalar is still unstable

- Mass inflation instability is related to the presence, in the phase space, of  a repulsive fixed point

- For regular BH, an attractor in the phase space can provide a resolutive mechanism

- The presence of  the instability strongly depends on the specific functional form of  the BH geometry

- This calls for proposals for the type of  physics beyond the CH itself



Thank you for your attention!
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Modified action for our non-singular collapse model

Field equations:

A scalar function of  the energy-density, which couples matter and 
geometry non-minimally, with property:

≡ "#$%&&

Matter source:

Theory:

"#$ = [) + +())]/#/$ + +0#$

Choice of  1 ) :

1 2 = 13
1 + 130∗ 2

6

Matter Lagrangian



Model of  asymptotically safe gravitational collapse

Oppenheimer-Snyder collapse in General Relativity:
gravitational collapse Schwarzschild BH

Our model of  collapse implementing the idea of  an 
asymptotically safe gravitational interaction (by means of  
a modified classical theory of  gravity):
gravitational collapse A new regular BH

! = 0

GR: vacuum
GR: star

Event horizon

Event horizon

! = 0

≅ GR: vacuum

Markov-Mukhanov Lagrangian
in the infrared (≅ GR): star 

Ending state: Schwarzschild BH

Event horizon

Then the dynamics, after an energy-density threshold is reached, 
deviates from GR:
- running of  the Newtonian coupling becomes significant
- gravitational potential turns repulsive (N.B. but the star keeps
contracting)
- a hypothesis of  the singularity theorem is violated
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Singularity
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Markov-
Mukhanov
UV: star

Event horizon

Cauchy horizon

M.-M. 
UV: 
star

Event horizon

Cauchy horizon

Ending state is that there is no ending state:
an ongoing ‘‘eternal collapse’’ in the core
(while there would be a bounce for positive intrinsic curvature)

?Which effective theory (i.e.
a classical modified theory of  
gravity that implements the 
leading quantum correction to 
vacuum GR) for the strong-
gravity ’’vacuum’’ (i.e. outside the 
collapsing star)?

!%"

!&"Interior (‘’star’’) 
spacetime

Markov-Mukhanov
Lagrangian ?

Exterior spacetime
Matching
conditions at the 
star’s surface
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