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Part I

Topologically non-trivial horizons
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On black hole horizons

• Boundary of a black hole: B = M\ J−(I+), H = H+ = ∂B
• Killing horizon: Take Lℓg = 0, then H = Nℓ := {g(ℓ, ℓ) = 0, ℓ ̸= 0}

• Stationary BH event horizons are Killing
• Null and non-expanding
• Might not be a BH horizon (white, cosmological, neither...)
• Still requires global symmetry

• Isolated Horizons
Goal: capture horizon structure without a global symmetry.
Isolated horizons analogues of black hole thermodynamics: 0th and 1st law Classical papers by
Ashtekar, Lewandowski and many more from late 90’ early 00’
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Intrinsic structure of Isolated Horizons

Definition: Non-expanding horizon (H, g,∇)

• H = 3D null surface with g of signature (0 + +) and topology of bundle Π : H −→ S. S compact 2D
surface with Riemannian (2)g
(generalisation of H = S2 × R)

• g = Π∗ (2)g.

• Non-expanding: ℓ ∈ Γ(TH) s.t. g(ℓ, ·) = 0 =⇒ ℓ is Killing, Lℓg = 0
• ℓ symmetry =⇒ ℓ′ = fℓ also.

• H-null =⇒ ∇ is not unique, instead given externally s.t. : (2)∇ (2)g = 0

Definition: Isolated Horizon (H, g, [ℓ],∇)

• "Stationary to the second order": [Lℓ,∇] = 0

• Now ℓ 7→ c0ℓ, c0 ∈ R
• Rotation 1-form ω(ℓ) : ∇ℓ =: ω(ℓ) ⊗ ℓ, Lℓω

(ℓ) = 0
• Surface gravity: ∇ℓℓ = κ(ℓ)ℓ, assume its constant on H

• Pseudo-scalar invariant: (2)dω(ℓ) = Ω (2)η

• For IH: ω - unique, ℓ and κ up to a real const =⇒ either extremal︸ ︷︷ ︸
κ(ℓ)=0

or not︸︷︷︸
κ(ℓ) ̸=0
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Principle bundle structure

• So far: fibre bundle Π : H −→ S

• More: principle bundle G ↪→ H
Π−→ S

• G acts via the flow of ℓ
• Connected group: G = R or U(1). Classification by S and G.

• Bundle connection (choice of horizontal v.f. via ker ω̃) A = ω̃ ⊗ ℓ∗ if
• Lℓω̃ = 0✓
• ω̃(ℓ) = 1 =⇒ ω̃ = ω

κ

• Bundle curvature F = 1
κ
dω ⊗ ℓ∗

• ω̃ and shorthand for principal bundle connection
• Characterisation of U(1)-bundles

•
∫
S K(2)η = 2πχE(S) = 2− 2genus ∈ N - Euler characteristic

K Gausian curvature of (S, (2)q)
•

∫
S Ω(2)η = 2πχC(S) ∈ N - Chern number

© Maciej Ossowski 6



Petrov Type D Equation

• For embedded IH: Type D ⇔ Weyl tensor is Type D at the horizon Cα
βγδ

∣∣
Horizon

• For un-embedded IH: Type D ⇔K + iΩ− Λ
3
̸= 0

• Null co-frame on S: mA (A,B ∈ 1, 2)

• Einstein Eqs
∣∣
horizon =⇒ Petrov Type D eq: m̄Am̄B∇A∇B

(
K + iΩ− Λ

3

)−1/3
= 0

• Known solutions: Λ-vacuum:
• H = S × R, S - smooth Riemann surface with genus > 0 1

• H = S2 × R with axial symmetry2
• H = S3 → S2 , Hopf bundle with axial symmetry 3

• H = S3 → S2 , Hopf bundle with axial symmetry and conical singularities 4

• H → S, with structure of U(1)−non -trivial bundle over S, smooth Riemann surface with genus > 0 5

• Spherical and non-axially symmetric solution - open problem!

1Physics Letters B 783 (2018) 415–420, Denis Dobkowski-Ryłko, Wojciech Kaminski, Jerzy Lewandowski, Adam Szereszewski
2Phys. Rev. D 98 (2018), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and Tomasz Pawłowski
3Phys. Rev. D 100 (2019), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and István Rácz
4Phys. Rev. D 108 (2023), Denis Dobkowski-Ryłko, Jerzy Lewandowski, and MO
5Phys. Rev. D 110 (2024), 024071, Jerzy Lewandowski, and MO
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Spherical horizons

• For axial symmetry Type D Eq reduces to ODE. Full classification is known.

• Topology H Π−→ S2, i.e. Hopf bundles and higher.
• Non-rotating: dω = 0 =⇒ Ω = const & Taub-NUT-...
• Rotating: dω ̸= 0 =⇒ Ω = Ω(x), 3 parameters & Kerr-NUT-...
• "Transversal" horizons: KVF other (!) than ℓ generates U(1) symmetry, 5 parameters & Kerr-NUT-...

• Two conically singular halves glued into a smooth (but topologically non-trivial) horizon, or
• Topologically trivial horizon, but with conical singularities

• Extremal horizons with transversal structure: still topologically non-trivial
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Higher genus horizon

• S - smooth, oriented, compact, Riemann surface =⇒ topologically characterized only by genus
• K = 4π(1−genus)

Area =const, Ω =const (Ω = 0 for trivial horizons) =⇒ non=rotating
• Toroidal case: explicit coordinates for all flat (K = 0) metrics
• Genus > 1: no easy coordinates, general arguments

• Constant, negative curvature
• PrinU(1)(S) ∼= H2(S;Z) ∼= Z ( ∼ first Chern class )

• (2)ω defined up to
• U(1) gauge
• 1-forms α1, . . . , α2g generating the first de Rham cohomology group H1(S,R) ∼= R2genus for any genus
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Part II

Embeddings of topologically non-trivial horizons
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Plebański-Demiański spacetimes

• Most general Petrov Type D solution - Weyl tensor has 2 double principle directions
• Lambda-electro-vaccum solution to EEs in 4D, with EM field aligned with principal null directions
• Generalisation of Schwarzschild, Kerr etc ...
• Parameters:

M︸︷︷︸
"mass"

, a︸︷︷︸
Kerr

, α︸︷︷︸
acceleration

, e, g︸︷︷︸
e.m. charges

,

Λ︸︷︷︸
cosmological constant

, l︸︷︷︸
N(ewmn)-U(unti)-T(amburino)

,
• No topology restriction. Useful to distinguish 2D surfaces with curvature

ϵ > or = or < 0

• 2 commuting Killing Vector fields ≈ time translation, rotation symmetry
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Accelerated Kerr-NUT-adS and spherical troubles

ds2 = − 1

F 2

[
Q
Σ
(dt−Adϕ)2 +

Σ

Qdr2 +
Σ

P dθ2 +
P
Σ

sin2 θ(adt− ρdϕ)2
]

Q = Q(r)− zeros define Killing Horizon,
P = P(θ) > 0, Σ = Σ(r, θ) ̸=> 0, ρ = ρ(r), F = F (r, θ) ̸= 0

A = a sin2 θ − 2l (cos θ − 1) , A(θ = 0) = 0, A(θ = π) = 4l ̸= 0

ω := dt−Adϕ not continuos at θ = π =⇒ singular half-axis.

Misner interpretation

t′ := t− 4lϕ =⇒ ω := dt−A′dϕ, A′ = a sin2 θ − 2l (cos θ + 1) t is cyclic with period 8πl! ∂t , ∂ϕπ - cyclic
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Orbits of Killing vector fields and the bundle structure

S3 ×R, metric g

∂tΠ

S2 ×R, metric q

U(1)-principle bundle

• Base space: S2 × R
• Fibres: group U(1)

• Total space: S3 × R
locally
≈ S2 × U(1)× R

• U(1) preserves fibres and acts on them:
• Freely: no non-trivial fixed points
• Transitively: every point is reachable from any

other

g = − (Π∗f)︸ ︷︷ ︸
lapse function

ω ⊗ ω︸︷︷︸
connection

+ Π∗ q︸︷︷︸
orbit-space metric

, (∂t)
µ(∂t)µ = −(Π∗f)

Residual conical singularity on the space of the orbits!
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Orbits of Killing vector fields done right

S3 ×R, metric g

ξΠ

S2 ×R, metric q

Non-singular spacetimes

• Generically: ξ = ∂t + b∂ϕ, b ∈ R
• Exactly 2 (equivalent) choices of ξ with no conical

singularity

P(0) =
P(π)

|(1− 4bl)|

• Generates horizon if ξ = ℓ = ∂t +
a

ρ(rH )∂ϕ
&

constraint on parameters.

• ω :=
g(ξ,·)
g(ξ,ξ)

g = − (Π∗f)︸ ︷︷ ︸
lapse function

ω ⊗ ω︸︷︷︸
connection

+ Π∗ q︸︷︷︸
orbit-space metric

, ξµξµ = −(Π∗f)

Every component is well defined =⇒ the spacetime is non-singular, including horizon as a 3D
manifold.
Generically (ξ ̸= ℓ) space of the null orbits is not smooth - quotient by two different vector fields.
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Embedding spacetimes

Generalised Taub-NUT-(anti-) de Sitter (M, l,Λ) with t cyclic.

g = −f(r)

(
dt+ l

i(ζdζ̄ − ζ̄dζ)

1 + 1
2
ϵζζ̄

)2

+ f(r)−1dr2 + (r2 + l2)
2dζdζ̄

(1 + 1
2
ϵζζ̄)2

,

f(r) =
ϵ(r2 − l2)− 2Mr − Λ( 1

3
r4 + 2l2r2 − l4)

r2 + l2
, ϵ = 0,±1

• Spherical: ϵ = 1, Taub-NUT-adS ζ =
√
2 tan 1

2
θ exp(iϕ)

• l = 0 Schwarzschild-(anti-) de Sitter

• Planar: ϵ = 0, T2 = R2/Z2

• Hyperbolic: ϵ = −1, S with genus > 1, S = H/Γ, Γ ⊂ PSL(2,R)

• Bundle topology: U(1) ↪→ P × R Π−→ S × R.
• Connection defined up to H1(S,R) =⇒ Gravitational Aharonov-Bohm
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Part III

Corollary:
Conical singularity in NUT is observer-dependent

based on: arXiv:2507.21238, Ivan Kolář, Pavel Krtouš, MO
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Conical singularity is observer-dependent

c - cyclic Killing vector field. Defines τ and has closed orbits.
Axis = {x ∈ M : c = 0}.

1. The elementary flatness condition - assures 2π−periodicity.
∇α(c

2)∇α(c2)

4c2
axis−−→ 1 =⇒ lim

∥c∥→0+

∥∥d∥c∥∥∥ = 1

Assumptions:

• In some region of (M, g) - stationary axially symmetric ST
• with (at least) a 2-dimensional Abelian algebra of KVFs - Γ
• such that there exist cyclic KVF c ∈ Γ with 2π periodic orbits.

Therefore ∃ infinitely many timelike KVFs (∼ observers), choose any of them: t ∈ Γ.
Assume that the singular axis point x is not a regular boundary point (otherwise extend the spacetime)
and that x corresponds to a quasi regular-singularity.
"Where" is the singular axis? We need a notion of a boundary corresponding to a singular point.
Singular axis point x ∈ ∂Mand the axial Killing vector field a ∈ Γ

∥a∥ → 0+ , towards x and lim
∥a∥→0+

∥∥d∥a∥∥∥ = 1 ,

© Maciej Ossowski 17



Conical singularity

What is conical singularity? Wrong choice of the angular coordinates - ϕ is not 2π periodic.
Quasi-regular point - curvature in all parallelly propagated frames is regular.
Its measure: conicity On a 2D surface: take a circle centred at the axis, of length L◦ and (geodesic)
radius ρ◦:

C2D = lim
ρ◦→0+

L◦

2πρ◦
.

For regular axis: C = 1.
In 4D spacetime: choose a 2D surface S and apply the above.
Usually (t, r, θ, ϕ) → (θ, ϕ).

• Does CS depend on the choice of S?
• To which point of the axis is the limit calculated? Does the limit depend on the curve taken?
• The axis is not part of the manifold: how to distinguish points?

No better definition?
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New definition: conicity

The axial KVF a ∈ Γ hence:

a =
1

C (c+ T t) ,

for some

• C - conicity
• T - time-shift

The orbit of Γ. Left T = 0, right T ≠ 0:

The cyclic c (blue), axial a (green), and timelike t (red) KVF.
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Transformation laws

Take a different observer (timelike KVF): t̃ = αt+ βc, α ̸= 0 then:

a =
1

C

(
c+ T t̃− βc

α

)
=

α− βT
αC

(
c+

T
α− βT t̃

)
,

The conicity and time-shift transform as:

C(t̃) = C(t)∣∣1− β
α
T (t)

∣∣ , T (t̃) =
T (t)

α− βT (t)

• In general both are observer-dependent!
• If T (t) = 0 for some t then ∀t̃ we have T (t̃) = 0 and C(t) = C(t̃).

• The observer-dependency is caused by the time-shift, which is caused by NUT
• Observers without conicity:

tI/II
α

= t+
1± C
T c ,

• If we have two parts of the axis: (+) ≡ (θ = 0), (−) ≡ (θ = π) there are observers without conicity
difference (∆C :=

C+−C−
C++C−

)

t1/2
α

= t+
C+ ± C−

C+T− ± C−T+
c
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Examples: Taub-NUT

Taub-NUT (l) spacetime without periodic time identification:

g = −f(r)(dt+ 2l(cos θ + s)dϕ)2 +
dr2

f(r)
+ (l2 + r2)(dθ2 + sin2 θdϕ2) .

f(r) :=
r2 − 2mr − l2

r2 + l2
.

Two axial KVFs and two axis parts
a± = (∂ϕ + 2l(s± 1)∂t)

Consider an observer t = tt∂t + tϕ∂ϕ , then always possible to regularise a part:

C±(t) =
1∣∣∣1 + 2l(s± 1) t

ϕ

tt

∣∣∣ , T±(t) = −
2l(s± 1) 1

tt

1 + 2l(s± 1) t
ϕ

tt

,

∆C =
2

1 +

∣∣∣∣ 1+2(s+1)l t
ϕ

tt

1+2(s−1)l t
ϕ

tt

∣∣∣∣ − 1 .

Similarly for accelerated Kerr-NUT-(anti-) de Sitter.
Reproduces conditions for non-singular interpretation a’la Misner.
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Summary

Thank you for your attention!
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