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Introduction

e Black hole spacetimes are a challenge for classical, semiclassical, and
guantum gravity.

e PERTURBATIONS of black holes are crucial to analyze their stability.

e They also have applications in astrophysics. For instance, they describe
some regimes in the evolution of a black hole merger.

e This connects with the emission REs il zmgdﬂwn

of gravitational waves. \—. ) \—~ ‘
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e The ringdown of perturbed

black holes is dominated by g "
quasinormal modes. " Time
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Amplitude of gravitational waves




Introduction

e [dentification of points of the original
and the perturbed manifold introduce
some gauge freedom.

e Only perturbative quantities invariant
under this freedom are physical.

e These are the PERTURBATIVE
GAUGE INVARIANTS.

e At first order, they are linear in the
perturbations and can be multiplied
by any background-dependent factor.

e They satisfy second-order differential equations, defined in the set of
orbits of spherical symmetry. Quasinormal modes solve these equations
with outgoing boundary conditions.



e There exists an intriguing relation between different perturbative gauge
invariants, given by DARBOUX TRANSFORMATIONS.

e Suppose that ¢ satisfies a wave equation in two dimensions for a potential
v,, which depends on the angular-momentum number /.

Consider the transformation to W=¢+g,, where the acute stands for the
derivative wrt. a tortoise “radial” coordinate, and g, satisfies the Riccati
equation g,+g;+v,=c,, with ¢, a constant.

Then W is a solution to the equation for the new potential V',=v,+2¢,.
e Given a solution ¢,+v,p,=—w.¢,, define g,=(In(g,))’, with ¢,=w;.

Then, the old and new potentials admit isoespectral solutions (with the
same “frequency’), related by W=[¢pqp,—@¢,]/¢,.



e Most of the studies have been carried out in the Lagrangian formalism.

e A HAMILTONIAN formulation for perturbed nonrotating black holes -as
well as a higher-order perturbative formalism- was developed by Martin-
Garcia, Brizuela and G.A.M.M. in the 2000s.

e This formulation employs spherical symmetry as a key ingredient. It splits
the 4-dimensional manifold into two 2-dimensional ones.

e Perturbative gauge invariants are easily characterized because they
commute with the generators of perturbative diffeomorphisms.

e The Hamiltonian formulation is especially suitable for quantization.

e However, the radial dependence highly complicates the analysis.



Introduction

e The complications with the radial
dependence can be handled in the
interior of the black hole, where it
becomes a time dependence.

e This interior is isometric to a
Kantowski-Sachs (KS) cosmology.

e Can the Hamiltonian formulation be
completed in this interior? YES.
(Minguez-Sanchez & G.A.M.M.).

e And quantum mechanically? YES.
In LQC, the singularity is solved.
(Elizaga Navascués, Minguez-
Sanchez & G.A.M.M.).

e Can we use it to understand Darboux
transformations?



Background

e The metric in the interior can be written in terms of triad variables as

d x’

o (9) | p.(T) ‘(d 62+sin26dq)2).

ds’=p;(t)| —N*(7) -+
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with extrinsic-curvature variables such that (#, p,}=1, (¢, p.j=2.

e The transformation (p,,b)—i(p,,—b) interchanges the time role, T <> x.

e The KS background is subject ONLY to the Hamiltonian constraint
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N H jo=— > Q§+2Qbﬂc—|—p§), Q,=jp;, j=b,c

The Omega-variables are generators of dilations.

e For classical solutions of mass M in “Schwarzschild” time t—17:

pi=—N'=T(2M~-T), |p.|=T*, Q,=T-2M, Q=M.



We consider compact sections with the topology of S§'xS”.
Then, zero-modes are isolated and can be treated exactly.

We expand our perturbations in REAL spherical harmonics and Fourier
modes.

We use a real Regge-Wheeler-Zerilli basis of harmonics.
Spherical harmonics split in polar and axial under parity.

A polar harmonic of eigenvalue —/(/+1) for the Laplacian on S* has parity
eigenvalue equal to (—1)'. Scalar harmonics Y] are polar.

Using capital Latin letters for S°-indices, we decompose any symmetric
tensor as

T,dxdx"=T_dx’+2T _,dxdx"'+T ,,dx" dx”.



e Forscalarson S°, we have C. 6 q> ZCZ

e For covectors, w,(0,0)=). (W}”Z}”Aan}”X;"A),

where we include polar and axial contributions.
Using the metric Y, on S* and its covariant derivative, we have

Z0 =Y X mepy Yo, 1=

e Finally, for tensors

T,5(0,0) ZT Y Y/ +Z(T AUt XZAB)

_ m 1 [([+1 .
with X, ;== % Y

2(X’lnA:B+X’ZnB:A)’ Z! =Y apt

All these harmonics are “orthonormalized’.

[>2.



We choose real spherical harmonics,

Y”, m=0; (=) (Y'+Y™), m>0; ﬂ(Y'ﬁ'—Y'ﬁ'*), m<0,.

V2 iV2

Similarly, for the Fourier expansion on S', we employ real modes,

Y, —

Wn,k—>[W0:1; Wn,+=\/fcosu)nx, Wn,_:stinu)nx, mn:2nn,n21}.

For simplicity, we will restrict ourselves to AXIAL perturbations with />2.
Polar perturbations can be studied along similar lines.

There are no scalar axial perturbations, and vector ones are pure gauge.

We might include a perturbative scalar field in the analysis. But it would
only contribute with polar perturbations.



e Calling {vl={n,A==,1,m}, we can expand the axial pertubations of the
spatial metric, its momentum, and the shift vector as

Ah,dx‘dx"==2> hi(t) X} ,(0,0)W, k(x)dxdxAJrZ B (T) X} 5(0,0) W, (x)dx" dx”,

pab 4T[pb
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dx d] Z z+1 X7 (0,0)W, , (x)dxdx”
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N, dx* ——167[Zh ) X7 (0,0)W ,k(x)dxA.
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)XZAB<6 (1)> ( )dx dx”,

e At second order, the contribution of the perturbations to the action has the

form 16Hde ( -|-hv v h Cax N%ix).

Perturbative diff. constraints Hamiltonian constraint
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e Considering the background as fixed, we can perform a linear canonical
transformation in the perturbations so that they are described by gauge

Invariant canonical pairs, and by the perturbative constraints and variables
conjugate to them,

iy, pyhy, pyl—
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E.g. with the generating function
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e The perturbative term in the Hamiltonian changes due to the background

evolution of the generating function, given by its Poisson bracket with the
background Hamiltonian.



e The perturbative contribution to the action can be written

L
167

fdr

where the new lapse includes quadratic perturbative terms and

Py (01 1(1+1)
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e \We can eliminate the cross-terms in the perturbative contribution to the
Hamiltonian and introduce (up to a constant factor) the Gerlach-Sengupta

gauge invariant, generalized to any background and evaluated in the
interior.




e This gauge invariant and its momentum are given by

v U=2) ! A ALUAD) o s
QGS_ \/<l+2), Q1+ pz QbPI )
v o (1+2)./ YV (1_2>./ 'V 1 V]

e After this canonical transformation, the perturbative term of the

Hamiltonian adopts a simple form (easy to quantize),

ax, 1 v V v
H, (GS):E(PGS)2+?(QGS)2)

f/:u)ipiil—l(l—l—l)pz—4(§22+pi) ~ (Dipi—l(l*'1)(Qi+2Qch>+SQch-

e |[n 2-dimensions, the generalized Gerlach-Sengupta master variable for

any background is

0gs(T, X)ZZM Ocs(T) Wn,k(‘x>‘



e The Gerlach-Sengupta modes satisfy

(N7 0. +0} pl)+(1(1+1) pi-40i=4 pi||0ks=0.

Using the Laplacian of the 2-dimensional metric induced on the set of
spherical orbits and the Gerlach-Sengupta master variable, we obtain

P

2

Py

O,+ 5 |1(1+1) py =4 Q4 p3 || O [, x)=0.

e |tis easy to reconstruct the metric perturbations with this invariant.

e The above contribution of u)i IS not constant, but appears multiplied by pi.

e Ve can render it constant with the Cunningham-Price-Moncrief invariant,

v [=2)
QCPMzz\/EZ_I_z))/ O cru -



We carry out the canonical transformation

Background
Hamiltonian
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We could use the Regge-Wheeler master variable instead, 2@, =0 Q.

The new perturbative contribution to the Hamiltonian constraint is
N

Pe
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This leads to the master equation |0, — or. =0.

[(I+1) 6M

Im
T2 T3 QCPM:O'

For Schwarzschild: [Dz —




d T, the equation

e Defining dT=N|pC
can be written

5 +wz—;ls(nz+pz)—z<z+1>pz] Oy =0.

e Forthe time T, the perturbative
Hamiltonian has the form
_ 1 1

Hix:E(PVCPM)z"FE((Di +vl><Q\C,‘PM)2’

and the gauge invariant satisfies O, +(w> +v,) 0", =0, where f=0, f.

e RECALL:
A Darboux transformation Q/,,,=0"+g,0"leads to the new equation

QV-I-((x)i-I—VZ)QV:O, with V,=v,+2g,, if g’l+g12—|—v,=cl.




We want to show that Darboux transformations are just canonical
transformations that respect the structure of the Hamiltonian!

Consider a generic canonical transformation,
Qlpy=A0"+BP', P/, =CQO"+DP",
with AD—BC=1. (Canonical!)

The coefficients of the transformation are background (and thus time-)
dependent. We assume B#0, so that the transformation is not just a
simple redefinition of the gauge invariant. With a (background-dependent)
scaling, we set B to be constant.

Owing to the transformation, we get a new perturbative contribution to the
Hamiltonian. We require cross-terms to vanish and the coefficient of the
squared momentum be one half, as before the transformation!



e Canonical transformation: T

Qlpy=A0"+BP", Pl,,=CQO"+DP",

with C= AD—1 . (Canonical!) @8@ /\/L‘“--h
B ®
e Hamiltonian: H$X=E(P”)2+§( 2 4+V)(0Y)°. | I——
9
It is not difficult to see that this requires s
A=D. (No cross-term!)

, 1 . D
g, +g/+ o +v,)=—, with g==- (Momentum coeff.)

e If the new potential must not depend on « , we must have B *=w. +c,.

The transformation is fixed given ¢, and a solution to the Riccati equation.



e DARBOUX: Find the gauge invariant ~® CANONICAL: First transformation to

combinations of the metric perturba- variables that commute with the pertur-
tions. bative constraints.

e Master functions are combinations of e Second transformation to variables with

gauge invariants and first derivatives “ge.neralized” harmonic oscillator Hamil-
which satisfy wave equations. tonian.

e Darboux transformations relate such e Find the transformations preserving this
master functions. Hamiltonian form.

e They are characterized by a constant ¢, and a solutionto g, +g/+v,=c,.

e Darboux corresponds (in the interior) to the canonical transformations

1
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~ Conclusions -

¢ \We have developed a Hamiltonian formalism .
for perturbations of nonrotating black holes,
adapted to their interior.

e \We have identified gauge invariants/master
variables. Their dynamics involve quasinormal
modes, relevant during ringdown.

e Although derived from General Relativity, all relations are expressed in
terms of the background, and can be extended to effective ones.

e The formalism allows for an almost direct quantization, for example in
(hybrid) LQC!

e Darboux transformations become canonical transformations!

e \We can now investigate whether isospectroscopy is realized as a true
unitary transformation in quantum field theory (including all /''s).



In Memoriam
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