A Hamiltonian Formalism for Perturbed (Interiors of) Nonrotating Black Holes

JERZY LEWANDOWSKI MEMORIAL CONFERENCE, 15 September 2025

Guillermo A. Mena Marugán Instituto de Estructura de la Materia, CSIC (collaboration with Minguez-Sánchez, Lenzi and Sopuerta)

- Black hole spacetimes are a challenge for classical, semiclassical, and quantum gravity.
- PERTURBATIONS of black holes are crucial to analyze their stability.
- They also have applications in astrophysics. For instance, they describe some regimes in the evolution of a black hole merger.
- This connects with the emission of gravitational waves.
- The ringdown of perturbed black holes is dominated by quasinormal modes.

- Identification of points of the original and the perturbed manifold introduce some gauge freedom.
- Only perturbative quantities invariant under this freedom are physical.
- These are the <u>PERTURBATIVE</u>
 <u>GAUGE INVARIANTS</u>.
- At first order, they are linear in the perturbations and can be multiplied by any background-dependent factor.

 They satisfy second-order differential equations, defined in the set of orbits of spherical symmetry. Quasinormal modes solve these equations with outgoing boundary conditions.

- There exists an intriguing relation between different perturbative gauge invariants, given by **DARBOUX TRANSFORMATIONS**.
- Suppose that φ satisfies a wave equation in two dimensions for a potential v_l , which depends on the angular-momentum number l.

Consider the transformation to $\Psi = \dot{\varphi} + g_l \varphi$, where the acute stands for the derivative wrt. a tortoise "radial" coordinate, and g_l satisfies the Riccati equation $\dot{g}_l + g_l^2 + v_l = c_l$, with c_l a constant.

Then Ψ is a solution to the equation for the new potential $V_1 = v_1 + 2 g_1$.

• Given a solution $\dot{\phi_0} + v_l \phi_0 = -\omega_0^2 \phi_0$, define $g_l = (\ln(\phi_0))'$, with $c_l = \omega_0^2$.

Then, the old and new potentials admit **isoespectral** solutions (with the same "frequency"), related by $\Psi = [\dot{\phi} \phi_0 - \phi \dot{\phi}_0]/\phi_0$.

- Most of the studies have been carried out in the Lagrangian formalism.
- A <u>HAMILTONIAN</u> formulation for perturbed nonrotating black holes -as well as a higher-order perturbative formalism- was developed by Martín-García, Brizuela and G.A.M.M. in the 2000s.
- This formulation employs spherical symmetry as a key ingredient. It splits the 4-dimensional manifold into two 2-dimensional ones.
- Perturbative gauge invariants are easily characterized because they commute with the generators of perturbative diffeomorphisms.
- The Hamiltonian formulation is especially suitable for quantization.
- However, the radial dependence highly complicates the analysis.

- The complications with the radial dependence can be handled in the interior of the black hole, where it becomes a time dependence.
- This interior is isometric to a Kantowski-Sachs (KS) cosmology.
- Can the Hamiltonian formulation be completed in this interior? YES. (Minguez-Sánchez & G.A.M.M.).
- And quantum mechanically? YES.
 In LQC, the singularity is solved.
 (Elizaga Navascués, Mínguez-Sánchez & G.A.M.M.).
- Can we use it to understand Darboux transformations?

Background

The metric in the interior can be written in terms of triad variables as

$$ds^{2} = p_{b}^{2}(\tau) \left| -\underline{N}^{2}(\tau) \right| \left| p_{c}(\tau) \right| d\tau^{2} + \frac{dx^{2}}{\left| p_{c}(\tau) \right|} + \left| p_{c}(\tau) \right| \left| d\theta^{2} + \sin^{2}\theta d\phi^{2} \right|.$$

with extrinsic-curvature variables such that $\{b, p_b\}=1, \{c, p_c\}=2$.

- The transformation $(p_b, b) \rightarrow i(\bar{p}_b, -\bar{b})$ interchanges the time role, $\tau \leftrightarrow x$.
- The KS background is subject ONLY to the Hamiltonian constraint

$$\underline{N}H_{KS} = -\frac{\underline{N}}{2} \left(\Omega_b^2 + 2\Omega_b \Omega_c + p_b^2 \right), \quad \Omega_j = j p_j, \quad j = b, c.$$

The Omega-variables are generators of dilations.

• For classical solutions of mass M in "Schwarzschild" time $\tau \rightarrow T$:

$$p_b^2 = -\underline{N}^{-1} = T(2M - T), \qquad |p_c| = T^2, \qquad \Omega_b = T - 2M, \qquad \Omega_c = M.$$

Perturbations)

- We consider compact sections with the topology of $S^1 \times S^2$. Then, zero-modes are isolated and can be treated exactly.
- We expand our perturbations in REAL spherical harmonics and Fourier modes.
- We use a real Regge-Wheeler-Zerilli basis of harmonics.
- Spherical harmonics split in polar and axial under parity.
- A polar harmonic of eigenvalue -l(l+1) for the Laplacian on S^2 has parity eigenvalue equal to $(-1)^l$. Scalar harmonics Y_l^m are polar.
- Using capital Latin letters for S^2 -indices, we decompose any symmetric tensor as

$$T_{ab} dx^a dx^b = T_{xx} dx^2 + 2T_{xA} dx dx^A + T_{AB} dx^A dx^B$$
.

Perturbations >

- For scalars on S^2 , we have $\zeta(\theta, \phi) = \sum \zeta_l^m Y_l^m$.
- For covectors, $w_A(\theta, \phi) = \sum \left(W_l^m Z_{lA}^m + w_l^m X_{lA}^m \right)$, where we include polar and axial contributions.

Using the metric γ_{AB} on S^2 and its covariant derivative, we have

$$Z_{l,A}^{m} = Y_{l,A}^{m}, \quad X_{l,A}^{m} = \epsilon_{AB} \gamma^{BC} Y_{l,C}^{m}, \quad l \ge 1.$$

Finally, for tensors

$$\begin{split} T_{AB}(\theta, \phi) &= \sum \tilde{T}_{l}^{m} \gamma_{AB} Y_{l}^{m} + \sum \left(T_{l}^{m} Z_{lAB}^{m} + t_{l}^{m} X_{lAB}^{m} \right), \\ \text{with} \quad X_{lAB}^{m} &= \frac{1}{2} \left(X_{lA:B}^{m} + X_{lB:A}^{m} \right), \quad Z_{lAB}^{m} &= Y_{l:AB}^{m} + \frac{l(l+1)}{2} \gamma_{AB} Y_{l}^{m}, \quad l \geq 2. \end{split}$$

All these harmonics are "orthonormalized".

Perturbations)

We choose real spherical harmonics,

$$Y_{l}^{m} \rightarrow \left\{ Y_{l}^{m}, m=0; \frac{(-1)^{m}}{\sqrt{2}} (Y_{l}^{m} + Y_{l}^{m*}), m>0; \frac{(-1)^{m}}{i\sqrt{2}} (Y_{l}^{|m|} - Y_{l}^{|m|*}), m<0 \right\}.$$

• Similarly, for the Fourier expansion on S^1 , we employ real modes,

$$W_{n,\lambda} \to \{W_0 = 1; W_{n,+} = \sqrt{2}\cos\omega_n x, W_{n,-} = \sqrt{2}\sin\omega_n x, \omega_n = 2\pi n, n \ge 1\}.$$

- For simplicity, we will restrict ourselves to AXIAL perturbations with $l \ge 2$. Polar perturbations can be studied along similar lines.
- There are no scalar axial perturbations, and vector ones are pure gauge.
- We might include a perturbative scalar field in the analysis. But it would only contribute with polar perturbations.

Perturbations

• Calling $\{v\} = \{n, \lambda = \pm, l, m\}$, we can expand the axial pertubations of the spatial metric, its momentum, and the shift vector as

$$\begin{split} \Delta \, h_{ab} \, dx^a \, dx^b &= -2 \sum h_1^{\rm v}(\tau) \, X_{l\ A}^m(\theta\,,\varphi) \, W_{n,\lambda}(x) \, dx \, dx^A + \sum h_2^{\rm v}(\tau) \, X_{l\ AB}^m(\theta\,,\varphi) \, W_{n,\lambda}(x) \, dx^A \, dx^B \,, \\ \Delta \left[\frac{p_{ab}}{\sqrt{h}} \, dx^a \, dx^b \right] &= -\frac{4 \pi \, p_b^2}{V} \sum \, \frac{p_1^{\rm v}(\tau)}{l(l+1)} \, X_{l\ A}^m(\theta\,,\varphi) \, W_{n,\lambda}(x) \, dx \, dx^A \\ &\quad + \frac{8 \pi \, p_c^2}{V} \sum \, \frac{p_2^{\rm v}(\tau)}{l(l+1)(l+2)} \, X_{l\ AB}^m(\theta\,,\varphi) \, W_{n,\lambda}(x) \, dx^A \, dx^B \,, \\ N_a \, dx^a &= -16 \pi \sum h_0^{\rm v}(\tau) \, X_{l\ A}^m(\theta\,,\varphi) \, W_{n,\lambda}(x) \, dx^A \,. \end{split}$$

• At second order, the contribution of the perturbations to the action has the form $1 \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^$

$$\frac{1}{16\pi} \int d\tau \sum \left(\dot{h}_{1}^{v} p_{1}^{v} + \dot{h}_{2}^{v} p_{2}^{v} - h_{0}^{v} C_{v}^{ax} - \underline{N} \underline{H}_{v}^{ax} \right).$$

Perturbative diff. constraints

Hamiltonian constraint

Gauge invariants

 Considering the background as fixed, we can perform a linear canonical transformation in the perturbations so that they are described by gauge invariant canonical pairs, and by the perturbative constraints and variables conjugate to them,

$$\{h_1^{\mathsf{v}}, p_1^{\mathsf{v}}, h_2^{\mathsf{v}}, p_2^{\mathsf{v}}\} \rightarrow \left\{\tilde{Q}_1^{\mathsf{v}}, \tilde{P}_1^{\mathsf{v}}, \tilde{Q}_2^{\mathsf{v}}, \tilde{P}_2^{\mathsf{v}} = -\frac{1}{2}C_{\mathsf{v}}^{ax}\right\}.$$

E.g. with the generating function

$$F^{\vee} = h_1^{\vee} \tilde{Q}_1^{\vee} + h_2^{\vee} \tilde{P}_2^{\vee} - \frac{\lambda \omega_n}{2} h_2^{\vee} \tilde{Q}_1^{\vee} + \frac{(l+2)!}{4(l-2)!} \frac{(\Omega_b + \Omega_c)}{p_c^2} (h_2^{\vee})^2 - 2 l(l+1) \frac{\Omega_b}{p_b^2} \left(\frac{\omega_n^2}{4} (h_2^{\vee})^2 + \lambda \omega_n h_1^{\vee} h_2^{\vee} \right).$$

 The perturbative term in the Hamiltonian changes due to the background evolution of the generating function, given by its Poisson bracket with the background Hamiltonian.

Gauge invariants

The perturbative contribution to the action can be written

$$\int d\tau \left\{ \left(\underline{N} - \underline{\tilde{N}} \right) H_{KS} + \frac{1}{16\pi} \sum \left(\dot{\tilde{Q}}_{1}^{v} \tilde{P}_{1}^{v} + \dot{\tilde{Q}}_{2}^{v} \tilde{P}_{2}^{v} \right) + \frac{1}{8\pi} \sum \tilde{h}_{0}^{v} \tilde{P}_{2}^{v} - \underline{\tilde{N}} \sum \underline{\tilde{H}}_{v}^{ax} \right\},$$

where the new lapse includes quadratic perturbative terms and

$$\begin{split} \tilde{H}_{v}^{ax} &= \frac{p_{b}^{2} \left(\tilde{Q}_{1}^{v}\right)^{2}}{2 l \left(l+1\right)} + \frac{l \left(l+1\right)}{2 p_{b}^{2}} \left[8 \Omega_{b}^{2} + 8 \Omega_{b} \Omega_{c} + 4 p_{b}^{2} + \left(l+2\right) \left(l-1\right) p_{b}^{2} \right] \left(\tilde{P}_{1}^{v}\right)^{2} \\ &+ \frac{\left(l-2\right)!}{2 \left(l+2\right)!} \omega_{n}^{2} p_{c}^{2} \left[\tilde{Q}_{1}^{v} + \frac{4 l \left(l+1\right)}{p_{b}^{2}} \Omega_{b} \tilde{P}_{1}^{v} \right]^{2} + 2 \Omega_{b} \tilde{Q}_{1}^{v} \tilde{P}_{1}^{v}. \end{split}$$

 We can eliminate the cross-terms in the perturbative contribution to the Hamiltonian and introduce (up to a constant factor) the <u>Gerlach-Sengupta</u> gauge invariant, **generalized to any background** and **evaluated in the interior**.

Gerlach-Sengupta

This gauge invariant and its momentum are given by

$$\begin{split} Q_{GS}^{\mathrm{v}} &= -\sqrt{\frac{(l-2)\,!}{(l+2)\,!}} \left[\tilde{Q}_{1}^{\mathrm{v}} + \frac{4\,l\,(l+1)}{p_{b}^{2}} \Omega_{b} \, \tilde{P}_{1}^{\mathrm{v}} \right], \\ P_{GS}^{\mathrm{v}} &= -\sqrt{\frac{(l+2)\,!}{(l-2)\,!}} \, \tilde{P}_{1}^{\mathrm{v}} + 2\,\Omega_{b} \sqrt{\frac{(l-2)\,!}{(l+2)\,!}} \left[\tilde{Q}_{1}^{\mathrm{v}} + 41(l+1) \frac{1}{p_{b}^{2}} \Omega_{b} \, \tilde{P}_{1}^{\mathrm{v}} \right]. \end{split}$$

 After this canonical transformation, the perturbative term of the Hamiltonian adopts a simple form (easy to quantize),

$$\begin{split} H_{v}^{ax,\,(GS)} &= \frac{1}{2} (P_{GS}^{v})^{2} + \frac{\tilde{V}}{2} (Q_{GS}^{v})^{2}, \\ \tilde{V} &= \omega_{n}^{2} p_{c}^{2} + l(l+1) p_{b}^{2} - 4 (\Omega_{b}^{2} + p_{b}^{2}) \simeq \omega_{n}^{2} p_{c}^{2} - l(l+1) (\Omega_{b}^{2} + 2 \Omega_{b} \Omega_{c}) + 8 \Omega_{b} \Omega_{c}. \end{split}$$

 In 2-dimensions, the generalized Gerlach-Sengupta master variable for any background is

$$Q_{GS}^{lm}(\tau, x) = \sum_{n, \lambda} Q_{GS}^{\nu}(\tau) W_{n, \lambda}(x).$$

Master equation

The Gerlach-Sengupta modes satisfy

$$\left[\left(\left(\underline{N}^{-1} \partial_{\tau} \right)^{2} + \omega_{n}^{2} p_{c}^{2} \right) + \left(l (l+1) p_{b}^{2} - 4 \Omega_{b}^{2} - 4 p_{b}^{2} \right) \right] Q_{GS}^{v} = 0.$$

Using the Laplacian of the 2-dimensional metric induced on the set of spherical orbits and the Gerlach-Sengupta master variable, we obtain

$$\left[\Box_{2} + \frac{|p_{c}|}{p_{b}^{2}} \left(l(l+1)p_{b}^{2} - 4\Omega_{b}^{2} - 4p_{b}^{2}\right)\right] Q_{GS}^{lm}(\tau, x) = 0.$$

- It is easy to reconstruct the metric perturbations with this invariant.
- The above contribution of ω_n^2 is not constant, but appears multiplied by p_c^2 .
- We can render it constant with the Cunningham-Price-Moncrief invariant,

$$\mathbb{Q}_{CPM}^{\nu} = 2\sqrt{\frac{(l-2)!}{(l+2)!}} Q_{CPM}^{\nu}.$$

Master equation

• We carry out the canonical transformation

$$Q_{CPM}^{v} = \sqrt{\left|p_{c}\right|}Q_{GS}^{v}, \qquad P_{CPM}^{v} = \frac{1}{\sqrt{\left|p_{c}\right|}}\left|P_{GS}^{v} + \frac{1}{2}\frac{\left\{\left|p_{c}\right|, H_{KS}^{\bullet}\right\}}{\left|p_{c}\right|}Q_{GS}^{v}\right|}.$$
Background Hamiltonian

- We could use the **Regge-Wheeler** master variable instead, $2\mathbb{Q}_{RW}^{lm} = \partial_x \mathbb{Q}_{CPM}^{lm}$.
- The new perturbative contribution to the Hamiltonian constraint is

$$H_{v}^{ax}[N] = \frac{N|p_{c}|}{2} \left[(P_{CPM}^{v})^{2} + \left[\omega_{n}^{2} - \frac{1}{p_{c}^{2}} \left[3(\Omega_{b}^{2} + p_{b}^{2}) - l(l+1) p_{b}^{2} \right] \right] (Q_{CPM}^{v})^{2} \right].$$

• This leads to the master equation $\left[\Box_2 - \left| \frac{l(l+1)}{|p_c|} - 3\frac{\Omega_b^2 + p_b^2}{p_b^2 |p_c|} \right| \right] Q_{CPM}^{lm} = 0.$

For Schwarzschild:
$$\left[\Box_2 - \left(\frac{l(l+1)}{T^2} - \frac{6M}{T^3}\right)\right] Q_{CPM}^{lm} = 0.$$

Darboux

• Defining $d \bar{\tau} = N |p_c| d \tau$, the equation can be written

$$\left|\partial_{\bar{\tau}}^{2} + \omega_{n}^{2} - \frac{1}{p_{c}^{2}} \left[3 \left(\Omega_{b}^{2} + p_{b}^{2} \right) - l \left(l + 1 \right) p_{b}^{2} \right] \right| Q_{CPM}^{v} = 0.$$

For the time ₹, the perturbative
 Hamiltonian has the form

$$\bar{H}_{v}^{ax} = \frac{1}{2} (P_{CPM}^{v})^2 + \frac{1}{2} (\omega_n^2 + v_l) (Q_{CPM}^{v})^2,$$

and the gauge invariant satisfies $Q_{CPM}^{\nu} + (\omega_n^2 + v_l)Q_{CPM}^{\nu} = 0$, where $f = \partial_{\bar{\tau}} f$.

• RECALL:

A **Darboux** transformation $Q_{CPM}^{v} = \dot{\bar{Q}}^{v} + g_l \bar{Q}^{v}$ leads to the new equation $\dot{\bar{Q}}^{v} + (\omega_n^2 + V_I) \bar{Q}^{v} = 0$, with $V_I = v_I + 2 \dot{g}_I$, if $\dot{g}_I + g_I^2 + v_I = c_I$.

Canonical Darboux

- We want to show that Darboux transformations are just canonical transformations that respect the structure of the Hamiltonian!
- Consider a generic canonical transformation,

$$Q_{CPM}^{v} = A \bar{Q}^{v} + B \bar{P}^{v}, \qquad P_{CPM}^{v} = C \bar{Q}^{v} + D \bar{P}^{v},$$
 with $AD - BC = 1$. (Canonical!)

- The coefficients of the transformation are background (and thus time-) dependent. We assume $B \neq 0$, so that the transformation is not just a simple redefinition of the gauge invariant. With a (background-dependent) scaling, we set B to be constant.
- Owing to the transformation, we get a new perturbative contribution to the Hamiltonian. We require cross-terms to vanish and the coefficient of the squared momentum be one half, as before the transformation!

Canonical Darboux

Canonical transformation:

$$Q_{CPM}^{\text{v}} = A \, \bar{Q}^{\text{v}} + B \, \bar{P}^{\text{v}}, \qquad P_{CPM}^{\text{v}} = C \, \bar{Q}^{\text{v}} + D \, \bar{P}^{\text{v}},$$
 with $C = \frac{AD - 1}{B}$. (Canonical!)

It is not difficult to see that this requires

$$A = D$$
. (No cross-term!)

Theme 2 translated into points

$$(g_l + g_l^2 + (\omega_n^2 + v_l)) = \frac{1}{R^2}$$
, with $g_l = \frac{D}{B}$. (Momentum coeff.)

• If the new potential must not depend on ω_n , we must have $B^{-2} = \omega_n^2 + c_l$. The transformation is **fixed** given c_l and a solution to the Riccati equation.

Darboux/Canonical

- DARBOUX: Find the gauge invariant combinations of the metric perturbations.
- Master functions are combinations of gauge invariants and first derivatives which satisfy wave equations.
- Darboux transformations relate such master functions.

- <u>CANONICAL</u>: First transformation to variables that commute with the perturbative constraints.
- Second transformation to variables with "generalized" harmonic oscillator Hamiltonian.
- Find the transformations preserving this Hamiltonian form.
- They are characterized by a constant c_l and a solution to $g_l + g_l^2 + v_l = c_l$.
- Darboux corresponds (in the interior) to the <u>canonical transformations</u>

$$Q_{CPM}^{v} = \frac{g_{l}}{\sqrt{\omega_{n}^{2} + c_{l}}} \bar{Q}^{v} + \frac{1}{\sqrt{\omega_{n}^{2} + c_{l}}} \bar{P}^{v}, \qquad P_{CPM}^{v} = \left[\frac{g_{l}^{2}}{\sqrt{\omega_{n}^{2} + c_{l}}} - \sqrt{\omega_{n}^{2} + c_{l}} \right] \bar{Q}^{v} + \frac{g_{l}}{\sqrt{\omega_{n}^{2} + c_{l}}} \bar{P}^{v}.$$

Conclusions

- We have developed a Hamiltonian formalism for perturbations of nonrotating black holes, adapted to their interior.
- We have identified gauge invariants/master variables. Their dynamics involve quasinormal modes, relevant during ringdown.

- Although derived from General Relativity, all relations are expressed in terms of the background, and can be extended to effective ones.
- The formalism allows for an almost direct quantization, for example in (hybrid) LQC!
- Darboux transformations become canonical transformations!
- We can now investigate whether isospectroscopy is realized as a true unitary transformation in quantum field theory (including all l's).

