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● Black hole spacetimes are a challenge for classical, semiclassical, and 
quantum gravity.

● PERTURBATIONS of black holes are crucial to analyze their stability.

● They also have applications in astrophysics. For instance, they describe 
some regimes in the evolution of a black hole merger.

● This connects with the emission 
of gravitational waves.

● The  ringdown of  perturbed  
black holes is dominated by 
quasinormal modes.
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● Identification of points of the original
and the perturbed manifold introduce
some gauge freedom.

● Only perturbative quantities invariant 
under this freedom are physical. 

● These are the PERTURBATIVE 
GAUGE INVARIANTS. 

● At first order, they are linear in the 
perturbations and can be multiplied
by any background-dependent factor.

● They satisfy second-order differential equations, defined in the set of 
orbits of spherical symmetry. Quasinormal modes solve these equations 
with outgoing boundary conditions. 
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Introduction

● There exists an intriguing relation between different perturbative gauge 
invariants, given by DARBOUX TRANSFORMATIONS.

● Suppose that    satisfies a wave equation in two dimensions for a potential 
      which depends on the angular-momentum number    

Consider the transformation to                     where the acute stands for the 
derivative wrt. a tortoise “radial” coordinate, and    satisfies the Riccati 
equation                           with      a constant.

Then      is a solution to the equation for the new potential  

● Given a solution                                define                          with            

Then, the old and new potentials admit isoespectral  solutions (with the 
same “frequency”), related by  

φ

vl , l .

Ψ=φ́+g lφ ,
g l

ǵ l+g l
2+v l=cl , cl

Ψ V l=v l+2 ǵ l .

φ0+v lφ0=−ω0
2φ0 ,́́ g l=(ln (φ0))́ , cl=ω0

2 .

Ψ=[φ́φ0−φφ́0]/φ0 .



  

Introduction

● Most of the studies have been carried out in the Lagrangian formalism.

● A HAMILTONIAN  formulation for perturbed nonrotating black holes -as 
well as a higher-order perturbative formalism- was developed by Martín-
García, Brizuela and G.A.M.M. in the 2000s. 

● This formulation employs spherical symmetry as a key ingredient. It splits 
the 4-dimensional manifold into two 2-dimensional ones.

● Perturbative gauge invariants are easily characterized because they 
commute with the generators of perturbative diffeomorphisms.

● The Hamiltonian formulation is especially suitable for quantization.

● However, the radial dependence highly complicates the analysis.



  

Introduction

● The complications with the radial 
dependence can be handled in the 
interior  of the black hole, where it 
becomes a time dependence.

● This interior is isometric to a 
Kantowski-Sachs (KS) cosmology.

● Can the Hamiltonian formulation be 
completed in this interior? YES. 
(Mínguez-Sánchez & G.A.M.M.). 

● And  quantum  mechanically?    YES. 
In LQC, the singularity is solved. 
(Elizaga Navascués, Mínguez-
Sánchez & G.A.M.M.). 

● Can we use it to understand Darboux 
transformations? 



  

Background

● The metric in the interior can be written in terms of triad variables as

with extrinsic-curvature variables such that 

● The transformation                               interchanges the time role,

● The KS background is subject ONLY to the Hamiltonian constraint

The Omega-variables are generators of dilations.

● For classical solutions of mass       in “Schwarzschild” time  

ds2
= pb

2
(τ)(−N 2

(τ) ∣pc(τ)∣ d τ
2
+

d x2

∣pc(τ)∣)+∣pc(τ)∣(d θ
2
+sin2

θd ϕ2) .

{b , pb}=1, {c , pc}=2 .

N H KS=−
N
2
(Ωb

2+2ΩbΩc+ pb
2) , Ω j= j p j , j=b ,c.

τ→T :

pb
2=−N−1=T (2M−T ) , ∣pc∣=T 2 , Ωb=T−2 M , Ωc=M .

M

τ ↔ x .( pb ,b)→ i( p̄b ,−b̄)



  

Perturbations

● We consider compact sections with the topology of             
Then, zero-modes are isolated and can be treated exactly.

● We expand our perturbations in REAL spherical harmonics and Fourier 
modes.
  

● We use a real Regge-Wheeler-Zerilli basis of harmonics. 

● Spherical harmonics split in polar and axial under parity. 

● A polar harmonic of eigenvalue              for the Laplacian on      has parity 
eigenvalue equal to            Scalar harmonics        are polar.   

● Using capital Latin letters for    -indices, we decompose any symmetric 
tensor as 

 

            

S1×S 2 .

−l (l+1) S 2

(−1)l . Y l
m

S 2

T abdxa dxb=T xx dx2+2T xAdx dx A+T AB dxA dxB .



  

Perturbations

● For scalars on         we have 

● For covectors,   
  

where we include polar and axial contributions. 

Using the metric         on       and its covariant derivative, we have

● Finally, for tensors
 

with

All these harmonics are “orthonormalized”.   

 

            

ζ(θ ,ϕ)=∑ ζ l
mY l

m .S 2 ,
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m Z l

m
A+w l

m X l
m

A) ,

γAB S 2

Z l
m

A=Y l
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X l
m
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1
2
(X l

m
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m
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m
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l (l+1)
2

γABY l
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Perturbations

● We choose real spherical harmonics,

         

● Similarly, for the Fourier expansion on        we employ real modes,
  

● For simplicity, we will restrict ourselves to AXIAL perturbations with        
Polar perturbations can be studied along similar lines.

● There are no scalar axial perturbations, and vector ones are pure gauge.   

● We might include a perturbative scalar field  in the analysis. But it would 
only contribute with polar perturbations.

 

            

Y l
m
→ {Y l

m , m=0 ;
(−1)m

√2
(Y l

m
+Y l

m✶
) , m>0 ;

(−1)m

i √2
(Y l

∣m∣
−Y l

∣m∣✶
) , m<0}.

S1 ,

W n ,λ→{W 0=1 ; W n ,+=√2 cosωn x , W n ,−=√2 sinωn x , ωn=2π n , n≥1}.

l≥2 .



  

Perturbations

● Calling                             we can expand the axial pertubations of the 
spatial metric, its momentum, and the shift vector as  

● At second order, the contribution of the perturbations to the action has the
form

     

{ν}={n ,λ=±, l ,m},

Δ hab dxa dxb=−2∑ h1
ν (τ) X l

m
A(θ ,ϕ)W n ,λ(x)dxdx A+∑ h2

ν(τ) X l
m

AB(θ ,ϕ)W n ,λ( x)dx AdxB ,

Δ [ pab

√h
dxadxb]=−

4π pb
2

V
∑

p1
ν
(τ)

l (l+1)
X l

m
A(θ ,ϕ)W n ,λ (x)dx dxA

+
8π pc

2

V ∑
p2
ν
(τ)

l (l+1)(l+2)
X l

m
AB(θ ,ϕ)W n ,λ (x)dxA dxB ,

N a dxa
=−16π∑ h0

ν
(τ)X l

m
A(θ ,ϕ)W n ,λ (x)dx

A .

1
16π∫ d τ ∑ ( ḣ1

ν p1
ν+ḣ2

ν p2
ν−h0

νC ν
ax−N H ν

ax ) .

Perturbative diff. constraints Hamiltonian constraint



  



  

Gauge invariants

● Considering the background as fixed, we can perform a linear canonical 
transformation in the perturbations so that they are described by gauge 
invariant canonical pairs, and by the perturbative constraints and variables 
conjugate to them,   

E.g. with the generating function

● The perturbative term in the Hamiltonian changes due to the background 
evolution of the generating function, given by its Poisson bracket with the 
background Hamiltonian.       

{h1
ν , p1

ν , h2
ν , p2

ν
}→ {Q̃1

ν , P̃1
ν , Q̃2

ν , P̃2
ν
=−

1
2

C ν
ax}.
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ν Q̃1
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ν P̃2
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λωn

2
h2
νQ̃1

ν+
(l+2)!
4(l−2)!

(Ωb+Ωc)
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2 (h2

ν)2−2 l (l+1)
Ωb

pb
2 (ωn

2

4
(h2

ν)2+λωn h1
νh2

ν).



  

● The perturbative contribution to the action can be written   

where the new lapse includes quadratic perturbative terms and

● We can eliminate the cross-terms in the perturbative contribution to the 
Hamiltonian and introduce (up to a constant factor) the Gerlach-Sengupta 
gauge invariant, generalized to any background  and evaluated in the 
interior.

     

∫d τ {(N−Ñ )H KS+
1

16π
∑ ( ˙̃Q1

ν P̃1
ν+ ˙̃Q2

ν P̃2
ν)+ 1

8π
∑ h̃0

ν P̃2
ν−Ñ∑ H̃ ν

ax} ,

H̃ ν
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pb
2 (Q̃1

ν)2

2 l (l+1)
+

l (l+1)

2 pb
2 [8Ωb

2+8ΩbΩc+4 pb
2+(l+2)(l−1) pb

2 ]( P̃1
ν)2

+
(l−2)!

2(l+2)!
ωn
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2 [Q̃1

ν+
4 l (l+1)
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2

Ωb P̃1
ν]

2

+2Ωb Q̃1
ν P̃1
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Gauge invariants



  

Gerlach-Sengupta

● This gauge invariant and its momentum are given by   

● After this canonical transformation, the perturbative term of the 
Hamiltonian adopts a simple form  (easy to quantize),

● In 2-dimensions, the generalized Gerlach-Sengupta master variable for 
any background is
     

QGS
ν
=−√ (l−2) !

(l+2)! [Q̃1
ν
+

4 l (l+1)

pb
2 Ωb P̃1

ν ] ,
PGS

ν =−√ (l+2)!
(l−2)!

P̃1
ν+2Ωb√ (l−2)!

(l+2)! [Q̃1
ν+4l(l+1)

1

pb
2
Ωb P̃1

ν ].

H ν
ax , (GS )

=
1
2
(PGS

ν
)

2
+

Ṽ
2
(QGS

ν
)

2 ,

Ṽ=ωn
2 pc

2+l (l+1) pb
2−4(Ωb

2+ pb
2) ≃ ωn

2 pc
2−l (l+1)(Ωb

2+2ΩbΩc)+8ΩbΩc .

QGS
lm (τ , x)=∑n ,λ

QGS
ν (τ)W n ,λ( x).



  

Master equation

● The Gerlach-Sengupta modes satisfy   

Using the Laplacian of the 2-dimensional metric induced on the set of 
spherical orbits and the Gerlach-Sengupta master variable, we obtain

● It is easy to reconstruct the metric perturbations with this invariant.

● The above contribution of       is not constant, but appears multiplied by 

● We can render it constant with the Cunningham-Price-Moncrief invariant, 

[((N−1
∂τ)

2
+ωn

2 pc
2)+(l (l+1) pb

2
−4Ωb

2
−4 pb

2) ]QGS
ν
=0.

[□2+
∣pc∣
pb

2 (l (l+1) pb
2
−4Ωb

2
−4 pb

2 )]QGS
lm
(τ , x)=0.

ωn
2 pc

2 .

ℚCPM
ν

=2√ (l−2)!
(l+2)!

QCPM
ν .



  

Master equation

● We carry out the canonical transformation  

● We could use the Regge-Wheeler master variable instead, 

● The new perturbative contribution to the Hamiltonian constraint is 

● This leads to the master equation                 

For Schwarzschild: 

     

QCPM
ν

=√∣pc∣QGS
ν , PCPM

ν
=

1

√∣pc∣(PGS
ν
+

1
2

{∣pc∣, H KS}

∣pc∣
QGS

ν ) .

H ν
ax [N ]=

N ∣pc∣
2 [(PCPM

ν )2+(ωn
2 −

1
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2 [3(Ωb

2+ pb
2)−l (l+1) pb

2 ])(QCPM
ν )2 ] .

[□2 −( l (l+1)

∣pc∣
−3

Ωb
2
+ pb

2

pb
2 ∣pc∣ )]QCPM

lm
=0.

[□2 −( l (l+1)

T 2 −
6 M

T 3 )]QCPM
lm

=0.

2ℚRW
lm
=∂xℚCPM

lm
.

Background 
Hamiltonian



  

● Defining                           the equation 
can be written 

● For the time       the perturbative 
Hamiltonian has the form 

and the gauge invariant satisfies                                          where 

● RECALL: 

A Darboux transformation                           leads to the new equation

                                  with                       if    

 

Darboux

H̄ ν
ax
=

1
2
(PCPM

ν
)

2
+

1
2
(ωn

2
+vl)(QCPM

ν
)

2 ,

τ̄ ,

QCPM
ν +(ωn

2 +vl )QCPM
ν =0 ,́́ f́ =∂ τ̄ f .

QCPM
ν

= ́̄Qν
+g l Q̄

ν

(∂ τ̄
2
+ωn

2
−

1

pc
2 [3(Ωb

2
+ pb

2)−l (l+1) pb
2]) QCPM

ν
=0.

d τ̄=N∣pc∣d τ ,

Q̄ν+(ωn
2 +V l)Q̄

ν=0 , V l=v l+2 ǵ l , 
́́ ǵ l+g l

2+v l=cl .



  

Canonical Darboux

● We want to show that Darboux transformations are just canonical 
transformations that respect the structure of the Hamiltonian!

●  Consider a generic canonical transformation,

 with                           (Canonical!)

● The coefficients of the transformation are background (and thus time-) 
dependent.  We  assume          so that the transformation is not just a 
simple redefinition of the gauge invariant.  With a (background-dependent) 
scaling, we set      to be constant.
 

● Owing to the transformation, we get a new perturbative contribution to the 
Hamiltonian. We require cross-terms to vanish and the coefficient of the 
squared momentum be one half, as before the transformation!  

    

 

B≠0 ,

QCPM
ν =AQ̄ν+B P̄ν , PCPM

ν =C Q̄ ν+D P̄ν ,

AD−BC=1 .

B



  

● Canonical transformation:

with                           (Canonical!)

● Hamiltonian:                                                

It is not difficult to see that this requires

                   (No cross-term!)

                                    with                   

● If the new potential must not depend on         we must have 

The transformation is fixed given      and a solution to the Riccati equation.
    

 

Canonical Darboux

ǵ l +g l
2+(ωn

2+v l)=
1

B2
, g l=

D
B

.

QCPM
ν =AQ̄ν+B P̄ν , PCPM

ν =C Q̄ν+D P̄ν ,

C=
AD−1

B
.

A=D .

ωn , B−2=ωn
2 +cl .

H̄ ν
ax=

1
2
( P̄ ν)2+

1
2
(ωn

2 +V l)(Q̄
ν) 2 .

c l

(Momentum coeff.)



  

● DARBOUX: Find the gauge invariant 
combinations of the metric perturba-
tions.

● Master functions are combinations of 
gauge invariants and first derivatives 
which satisfy wave equations.

● Darboux transformations relate such 
master functions. 
 

                                                   

    

 

Darboux/Canonical

● CANONICAL: First transformation to 
variables that commute with the pertur-
bative constraints.

● Second transformation to variables with 
“generalized” harmonic oscillator Hamil-
tonian.

● Find the transformations preserving this 
Hamiltonian form.
 

                                                   

    

 

● They are characterized by a constant       and a solution to  

● Darboux corresponds (in the interior) to the canonical transformations 

 

c l
ǵ l +g l

2+v l=cl .

QCPM
ν

=
g l

√ωn
2
+cl

Q̄ν
+

1

√ωn
2
+cl

P̄ν , PCPM
ν

=( g l
2

√ωn
2
+cl

−√ωn
2
+cl )Q̄ν

+
g l

√ωn
2
+cl

P̄ν .



  

● We have developed a Hamiltonian formalism
for  perturbations  of  nonrotating  black  holes, 
adapted to their interior. 

● We  have  identified  gauge  invariants/master
variables. Their dynamics involve quasinormal
modes, relevant during ringdown.

● Although derived from General Relativity, all relations are  expressed in 
terms of  the background, and can be extended to effective ones. 

● The formalism allows for an almost direct quantization, for example in 
(hybrid) LQC!

● Darboux transformations become canonical transformations! 

● We can now investigate whether isospectroscopy is realized as a true 
unitary transformation in quantum field theory (including all   's). l

Conclusions



  

In Memoriam
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