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The kinematical framework of loop quantum gravity

Canonical quantization of general relativity in the Ashtekar formulation. The
elementary variables in the classical theory are

he = P exp

(
−
∫
e

A

)
E(S) =

∫
S

d2σ na(σ)E
a
i (σ)τ

i

i.e. holonomies of the Ashtekar connection along 1D curves and fluxes of the
densitized triad through 2D surfaces.

The kinematical Hilbert space of LQG is spanned
by the spin network states

∣∣Γ, {je}, {ιv}〉 =

(∏
v∈Γ

ιv

)
·
(∏

e∈Γ

D(j)(he)

)
The holonomy operator acts as a multiplicative
operator in the spin network representation. The
flux operator acts essentially as a functional
derivative with respect to the connection.



Dynamics in canonical loop quantum gravity

In the canonical formulation of LQG, the dynamics is governed by the Hamiltonian
constraint operator

Ĉ(N)

Within the canonical theory there are two main approaches to the dynamics;
accordingly the above operator can be interpreted in two different ways:

– As a Hamiltonian constraint for the vacuum theory, where it determines the
space of physical states through the condition

Ĉ(N)|Ψ⟩ = 0

– As a physical Hamiltonian for gravity coupled to a reference matter field.

Classical theory:
d

dT
F (A,E) = {F,Hphys}

Quantum theory: i
d

dT
|Ψ(T )⟩ = Ĥphys|Ψ(T )⟩

For a suitable matter field (irrotational dust): Ĥphys = Ĉ(1)
[Brown, Kuchař 1994; Giesel, Thiemann 2012; Husain, Pawłowski 2013]



Scalar curvature in loop quantum gravity

The object of interest: Ricci scalar integrated over the spatial manifold∫
Σ

d3x
√
q (3)R

Relevant to loop quantum gravity both as a geometrical observable characterizing
the geometry of the spatial manifold, and as a possible Lorentzian part of the
Hamiltonian constraint:

C =
1

β2

ϵijkE
a
i E

b
jF

k
ab√

|detE|
+

1 + β2

β2

√
|detE| (3)R

In this talk: Direct quantization of the Ricci scalar as a function of the Ashtekar
variables (restricted to a fixed cubic graph) [Lewandowski, I.M. 2022]

Other Ricci scalar operators available in the literature:
– Using Regge’s formula for the integral

∫
d3x

√
q (3)R in terms of hinge

lengths and deficit angles [Alesci, Assanioussi, Lewandowski 2014]

– Using an expression of the Ricci scalar in terms of the spin connection and
”twisted geometry” variables [Long, Liu 2024]



Ricci scalar as a function of the Ashtekar variables

The starting point of our construction is to express the Ricci scalar directly as a
function of the Ashtekar variables.

(3)Rab = ∂cΓ
c
ab − ∂bΓ

c
ac + Γc

abΓ
d
cd − Γc

adΓ
d
bc qab =

Ea
i E

b
i

|detE|

A straightforward (but rather long) calculation gives an explicit expression of the
form √

|detE| (3)R = f
(
Ea

i , ∂aE
b
i , ∂a∂bE

c
i

)
The partial derivatives of the triad are problematic if one wishes to obtain a gauge
invariant operator (under internal SU(2) gauge transformations) upon
quantization. It is better to use the gauge covariant derivatives

DaE
b
i = ∂aE

b
i + ϵ k

ij A
j
aE

b
k

It turns out that the partial derivatives can be substituted with covariant
derivatives ”for free”:√

|detE| (3)R = f
(
Ea

i ,DaE
b
i ,D(aDb)E

c
i

)



Regularization on a cubic graph

The integrated Ricci scalar is regularized as a Riemann sum over a cubic partition:∫
d3x

√
q (3)R ≃

∑
□

ϵ3
√
|detE|(v) (3)R(v)

The covariant derivatives of the triad can be discretized as finite differences of
parallel transported flux variables (also known as gauge covariant fluxes):

Ẽ(S, x0) =

∫
S

d2σ na(σ)hx(σ)→x0
Ea

(
x(σ)

)
h−1
x(σ)→x0

The holonomies hx(σ)→x0
perform parallel transport from points on the surface to

a fixed point x0 along a chosen family of paths.



Quantization

After regularization on the cubic lattice, the Ricci scalar has been expressed as∫
d3x

√
q (3)R =

∑
□

f
(
Ei

(
Sa
□

)
,∆aEi

(
Sb
□

)
,∆abEi

(
Sc
□

))
+O(ϵ)

where ∆aEi(S
b) and ∆abEi(S

c) are finite differences of parallel transported flux
variables approximating the covariant derivatives of the triad.

Every factor appearing here can now be promoted into an operator in LQG.
Negative powers of the volume are quantized using the following prescription
(Tikhonov regularization):

1

V□
−→ V̂−1

v := lim
ϵ→0

V̂v

V̂ 2
v + ϵ2

The result is an operator of the form

̂∫
d3x

√
q (3)R =

∑
v∈Γ0

R̂v

on the Hilbert space of a fixed cubic graph Γ0.



Quantum-reduced loop gravity

The Hilbert space of quantum-reduced loop gravity is spanned by the ”reduced
spin network states” [Alesci, Cianfrani 2013]∏

e∈Γ0

D
(je)
jeje

(he)ie

They are characterized by the following properties:
– The state is defined on a cubic graph Γ0

– The magnetic indices of each holonomy are maximal (me = je) with respect
to the basis diagonalizing Ĵ2 and Ĵie , where ie = x, y, z is chosen according
to the direction of the edge e

– In the original formulation of the model the spins are assumed to be large:
je ≫ 1 for every edge e

Quantum-reduced loop gravity = ”LQG in diagonal gauge” (Ea
i = 0 for a ̸= i)

[Alesci, Cianfrani, Rovelli 2013; I.M. 2023]

M̂ : ” ̂Ea
i ̸=a = 0 ” M̂ |Ψ0⟩ → 0 (for large j)



Operators on the reduced Hilbert space

For a large class of loop quantum gravity operators, the action of the operator on
a reduced spin network state |Ψ0⟩ has the structure [I.M. 2020]

Ô|Ψ0⟩ = f(j)|Ψ⟩+ g(j)|Φ⟩
where |Ψ⟩ ∈ Hreduced, and for large j,

f(j) ≫ g(j)

This suggests that operators of quantum-reduced loop gravity can be obtained
from operators of full loop quantum gravity by dropping the small ”offending”
terms, defining the reduced operator RÔ as

RÔ|Ψ0⟩ := f(j)|Ψ⟩
The reduced operator RÔ is:

– A well-defined operator on the reduced Hilbert space
– A good approximation of the action of the full operator Ô on the state |Ψ0⟩:∣∣∣∣Ô|Ψ0⟩ − RÔ|Ψ0⟩

∣∣∣∣∣∣∣∣Ô|Ψ0⟩
∣∣∣∣ ≪ 1

– Typically very simple in comparison with the corresponding full operator



The one-vertex model

Although the action of the Hamiltonian is explicitly computable on the entire
reduced Hilbert space, we will now consider a very simple model, which is
obtained by choosing a graph containing just a single six-valent node.

We assume that the spatial manifold has the topology of a three-torus (or has
periodic boundary conditions) so the graph is formed by three closed mutually
orthogonal edges.

The state space of the model is spanned by the basis states

|jxjyjz⟩ = D
(jx)
jxjx

(hex)xD
(jy)
jyjy

(hey )yD
(jz)
jzjz

(hez )z



Hamiltonian in the one-vertex model

To obtain the Hamiltonian constraint for the single-vertex model, we compute

Ĉ(N)|jxjyjz⟩ = RĈ(N)|jxjyjz⟩ + lower order

The result is

RĈE(N) = − 1

β2
N(v)

[√
ĵxĵy

ĵz
ŝ(1)x ŝ(1)y +

√
ĵy ĵz

ĵx
ŝ(1)y ŝ(1)z +

√
ĵz ĵx

ĵy
ŝ(1)z ŝ(1)x

]

RĈL(N) = −16
1 + β2

β2
N(v)

[
ĵ
3/2
x√
ĵy ĵz

(
ŝ(1/2)x

)4
+ cycl. perm.

]

where
ĵi|jxjyjz⟩ = ji|jxjyjz⟩

ŝ(k)x |jxjyjz⟩ =
1

2i

(
|jx + k, jy, jz⟩ − |jx − k, jy, jz⟩

)
, etc.



Analogy with loop quantum cosmology

Consider the classical phase space of a homogeneous and isotropic universe:

Ai
a = c(t)δia Ea

i = p(t)δai {c, p} = 1

In loop quantum cosmology the connection c does not exist as a well-defined
operator, but the holonomy eiµc does:

êiµc|p⟩ = |p− µ⟩ p̂|p⟩ = p|p⟩

Hence the connection is quantized as (”polymerization”)

c → sinµc

µ
=

1

2i

eiµc − e−iµc

µ

Applying the same procedure to the (Euclidean) Hamiltonian constraint gives the
expression

CE = − 3

β2

√
pc2 → − 3

β2

√
p
sin2 µc

µ2

The classical expression for CE is recovered in the limit µ→ 0.



Extending the analogy to the Lorentzian term

There is a certain formal similarity between the polymerized expression

C
(µ)
E = − 3

β2

√
p
sin2 µc

µ2

and the Euclidean part of the Hamiltonian in the one-vertex model:

RĈE = − 1

β2

[√
ĵxĵy

ĵz
ŝ(1)x ŝ(1)y + cycl. perm.

]
If we imagine that the same relation should hold for the Lorentzian part

RĈL = −16
1 + β2

β2

[
ĵ
3/2
x√
ĵy ĵz

(
ŝ(1/2)x

)4
+ cycl. perm.

]

we can make a conjecture – a possible Lorentzian term for the LQC Hamiltonian

C
(µ)
L = −48

1 + β2

β2

√
p
sin4(µc/2)

µ2

(cf. a similar earlier proposal [Dapor, Liegener 2017])



Effective dynamics

Effective dynamics: Dynamics on a classical phase space generated by an effective
Hamiltonian function motivated by considerations from the quantum theory.

Heff = Hgr(p, c) +
π2
ϕ

2p3/2

Classical trajectory:

Hgr = − 3

β2

√
pc2

The standard Hamiltonian:

Hgr = C
(µ)
E = − 3

β2

√
p
sin2 µc

µ2

The new proposal:

Hgr = C
(µ)
E − 48

1 + β2

β2

√
p
sin4(µc/2)

µ2
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Effective dynamics

−4 −2 0 2 4
φ

0

500

1000

1500

2000

v

The effective dynamics of the volume
agrees with the classical trajectory in the
far future as well as far past of the bounce.
The trajectory v(ϕ) is symmetric under
ϕ→ ϕbounce − ϕ.

−1 0 1 2
φ

0

10

20

30

40

v

vmin =
v
(E)
min

8(1 + β2)3/4



Quantum dynamics of semiclassical states

In the setting of the one-vertex model, we wish to study the dynamics of the states

|p0, c0⟩ex |p0, c0⟩ey |p0, c0⟩ez
where

|p0, c0⟩e =
∑
j

(2j + 1)e−t(j−j0)
2/2e−ic0jD

(j)
jj (he)ie (p0 = j0 +

1
2 )

is a coherent state peaked on a diagonal connection and triad. (Analogous to
Gaussian wave packet: ψ(x0,p0)(x) =

1
2π

∫
dp e−t(p−p0)

2/2e−ipx0eipx)

The evolution of the initial state |ψ0⟩ = |p0, c0⟩ex |p0, c0⟩ey |p0, c0⟩ez is given by

|ψ(T )⟩ = e−iĤphysT |ψ0⟩

We will work with irrotational dust as the physical time variable, i.e. we choose

Ĥphys = ĈE(1) or Ĥphys =
1

β2
ĈE(1) +

1 + β2

β2
ĈL(1)



The setup for numerical computations

To make the problem numerically accessible, we assume that the spins take values
in the finite range ja ∈ {jmin, jmin + 1, . . . , jmax − 1, jmax}. (Note that the
subspace of the states |jxjyjz⟩ with all ja ∈ N is preserved by the Hamiltonian.)

The lower limit jmin = 1 can be achieved by a suitable factor ordering of Ĥphys,
which ensures that ⟨kxkykz|Ĥphys|jxjyjz⟩ = 0 if any ja = 0 or ka = 0.

The upper limit jmax is introduced artificially, ”by hand”. In the calculations that
follow, we use jmax = 200, giving a Hilbert space of dimension dimH = 8× 106.

We then evaluate |ψ(T )⟩ = e−iĤphysT |ψ0⟩ using numerical routines
(expm_multiply from scipy.sparse.linalg and expv from ExponentialUtilities.jl)
that compute the product eAv for a sparse matrix A and vector v.

To assess the range of validity of the numerical simulation, we monitor the
”occupation number” of the basis states in which any spin is maximal:

nmax =
∑

any ja=jmax

|cjxjyjz |2 |ψ(T )⟩ =
∑

jxjyjz

cjxjyjz (T )|jxjyjz⟩



Euclidean model: Expanding universe
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Euclidean model: Contracting universe
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Toy model with no factors of 1/
√

ĵi in the Hamiltonian
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ĵxŝ

(1)
y ŝ(1)z + cycl. perm.



Lorentzian model: Expanding universe
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Lorentzian model: Contracting universe
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Summary

We reviewed the construction of an operator representing the scalar curvature in
loop quantum gravity restricted to a fixed cubic graph. The operator is obtained
as a direct quantization of the Ricci scalar as a function of the Ashtekar variables.

Based on a formal similarity between the Hamiltonian in loop quantum cosmology
and in the one-vertex model of quantum-reduced loop gravity, we proposed a
possible new expression for the Lorentzian part of the Hamiltonian in LQC. The
scalar curvature is represented by a non-trivial polymerized expression, which
nevertheless goes to zero in the limit µ→ 0.

We showed that the time evolution of one-vertex states in quantum-reduced loop
gravity is accessible via numerical computations (over short enough time intervals,
due to the cutoff imposed on the spin quantum numbers).

For an initially contracting universe, the quantum dynamics of semiclassical states
around the bounce seems to match the semiclassical effective dynamics rather
poorly, especially if the Lorentzian term is included in the Hamiltonian.

Thank you for your attention


