Waiting around for Unruh

Jorma Louko

School of Mathematical Sciences, University of Nottingham

Jerzy Lewandowski Memorial, Warsaw, 15–19 September 2025

LJA Parry, D Vidal-Cruzprieto, CJ Fewster, JL 2508.19987

Potsdam c 1999

St Augustine, Florida, 1994

Plan

- 1. Unruh effect
 - ▶ Relativistic spacetime and analogue spacetime
 - \triangleright Circular motion in 2 + 1 dimensions: **low energy** regime
- 2. Quantum dot
 - Stationary motion response
- 3. Circular motion in 2+1 dimensions
 - Coupling of uniform and non-uniform sign
- 4. Outlook

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2\pi}$ Unruh 1976
- Weak coupling, long time, negligible switching effects
- ► Thermal: Observer/detector records detailed balance:

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{\rm gap}/T}$$

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T=\frac{a}{2\pi}$ Unruh 1976
- Weak coupling, long time, negligible switching effects
- ► Thermal: Observer/detector records detailed balance:

$$rac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{\mathsf{gap}}/T}$$

Can cook a steak!

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T = \frac{a}{2\pi} \times \frac{\hbar}{ck_B}$: 1 K $\leftrightarrow 10^{20} \text{m/s}^2$ Unruh 1976
- ▶ Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{\text{gap}}/T}$$
 Can cook a steak!

Well established

- Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T = \frac{a}{2\pi} \times \frac{\hbar}{ck_B}$: 1 K \leftrightarrow 10²⁰ m/s² Unruh 1976
- ▶ Weak coupling, long time, negligible switching effects
- Thermal: Observer/detector records detailed balance:

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{gap}/T}$$
 Can cook a steak!

Uniform circular motion?

- Long time in finite size lab!
- Accelerator storage rings
 Bell and Leinaas 1983,...
- ► Analogue spacetime: BEC, ⁴He,... Gooding et al. 2020, Bunney et al. 2023

Why now

2+1 dimensions: effective temperature

Why now

- Analogue spacetime experiment proposals
 - Finite size lab
 - ▶ Time dilation ↔ time-independent energy scaling \rightarrow data analysis

Bunney et al. 2023 Gooding et al. 2025

Gooding et al. 2020

2+1 dimensions: effective temperature

Why now

- Analogue spacetime experiment proposals
 - Finite size lab
 - ▶ Time dilation ↔
 time-independent energy scaling
 → data analysis

Gooding et al. 2020 Bunney et al. 2023 Gooding et al. 2025

2+1 dimensions: effective temperature

Linear acceleration \neq circular acceleration!

Long time limit:

- $ightharpoonup T_{rat} := T_{circ}/T_{lin}$
- $ightharpoonup E_{\rm red} := E/a$ energy gap
- ► v orbital velocity

Biermann et al. 2020 $v^{0.3_{0.5}} e^{0.7_{0.8_{0.9}}} e^{0.5}$

Why now

- Analogue spacetime experiment proposals
 - Finite size lab
 - ▶ Time dilation ↔ time-independent energy scaling \rightarrow data analysis

Gooding et al. 2020 Bunney et al. 2023 Gooding et al. 2025

2+1 dimensions: effective temperature

Linear acceleration \neq circular acceleration!

Long time limit:

- $ightharpoonup T_{\rm rat} := T_{\rm circ}/T_{\rm lin}$
- $ightharpoonup E_{\rm red} := E/a$ energy gap
- orbital velocity

Why now

- Analogue spacetime experiment proposals
 - Finite size lab
 - ▶ Time dilation ↔ time-independent energy scaling \rightarrow data analysis

Gooding et al. 2020 Bunney et al. 2023 Gooding et al. 2025

2+1 dimensions: effective temperature

Linear acceleration \neq circular acceleration!

Long time limit:

- $ightharpoonup T_{\rm rat} := T_{\rm circ}/T_{\rm lin}$
- $ightharpoonup E_{\rm red} := E/a$ energy gap

Today

Cure: $T_{\text{rat}} \simeq 1$ at long time \longleftrightarrow small gap double limit

Inspiration

Linear acceleration Unruh effect in 3+1: long time \longleftrightarrow large gap double limit

 \blacktriangleright $|E| \rightarrow \infty$ at **fixed** interaction duration: no thermality

Inspiration

Linear acceleration Unruh effect in 3+1: long time \longleftrightarrow large gap double limit

- $ightharpoonup |E| \to \infty$ at **fixed** interaction duration: no thermality
- ▶ $|E| \rightarrow \infty$ with interaction duration **polynomial** in |E|:

Thermality for **adiabatic** scaling with sufficient decay of $\hat{\chi}_1$

Inspiration

Linear acceleration Unruh effect in 3+1: long time \longleftrightarrow large gap double limit

- \blacktriangleright $|E| \to \infty$ at **fixed** interaction duration: no thermality
- ▶ $|E| \rightarrow \infty$ with interaction duration **polynomial** in |E|:

Thermality for **adiabatic** scaling with sufficient decay of $\widehat{\chi}_1$

but not for **plateau** scaling non-polynomially long time needed

2. Quantum dot (relativistic) Unruh(1976)-DeWitt(1979)

quartam dot (relativistic)

2. Quantum dot (relativistic)

 $\mathsf{Unruh}(1976)\text{-}\mathsf{DeWitt}(1979)$

Quantum field

Two-state detector (atom)

Interaction

Quantum field

- D spacetime dimension
- ϕ real scalar field
- |0 | Minkowski vacuum

Two-state detector (atom)

- $||0\rangle\rangle$ state with energy 0
- $||1\rangle\rangle$ state with energy E
- $x(\tau)$ detector worldline, τ proper time

Interaction

$$H_{\text{int}}(\tau) = c \chi(\tau) \mu(\tau) \phi(x(\tau))$$

- c coupling constant
- χ switching function, C_0^{∞} , real-valued
- μ detector's monopole moment operator

Probability of transition

$$\|0\rangle\!\rangle\otimes|0\rangle\longrightarrow\|1\rangle\!\rangle\otimes|\mathsf{anything}\rangle$$

in first-order perturbation theory:

Probability of transition

$$||0\rangle\!\rangle \otimes |0\rangle \longrightarrow ||1\rangle\!\rangle \otimes |$$
anything \rangle

in first-order perturbation theory:

$$P(E) = c^2 \underbrace{\left\lfloor \langle \! \langle 0 || \mu(0) || 1 \rangle \! \rangle \right\rfloor^2}_{\text{detector internals only:}} \times \underbrace{F_{\chi}(E)}_{\text{trajectory and } |0 \rangle}_{\text{response function}}$$

$$F_{\chi}(E) = \int d\tau' d\tau'' e^{-iE(\tau' - \tau'')} \chi(\tau') \chi(\tau'') W(\tau', \tau'')$$

$$W(\tau', \tau'') = \langle 0 | \phi(\mathsf{x}(\tau')) \phi(\mathsf{x}(\tau'')) | 0 \rangle \qquad \text{Wightman function}$$
 (distribution)

Effective temperature

Long interaction duration

$$W(\tau',\tau'')=W(\tau'-\tau'',0)=:W(\tau'-\tau'')$$
 time translation invariance
$$\Rightarrow F_{\chi}(E)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}\omega\,|\widehat{\chi}(\omega)|^2\,\widehat{W}(\omega+E)$$

Effective temperature

Long interaction duration

$$W(\tau',\tau'')=W(\tau'-\tau'',0)=:W(\tau'-\tau'')$$
 time translation invariance
$$\Rightarrow F_{\chi}(E)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}\omega\,|\widehat{\chi}(\omega)|^2\,\widehat{W}(\omega+E)$$

Effective temperature (cf. detailed balance)

$$\frac{F_{\chi}(-E)}{F_{\chi}(E)} = e^{E/T_{\chi}} \quad \Rightarrow \quad \left| T_{\chi} = \frac{E}{\ln\left(\frac{F_{\chi}(-E)}{F_{\chi}(E)}\right)} \right| \qquad T_{\chi} = T_{\chi}(E)$$

Long interaction duration

$$W(\tau',\tau'')=W(\tau'-\tau'',0)=:W(\tau'-\tau'')$$
 time translation invariance
$$\Rightarrow F_{\chi}(E)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}\omega\,|\widehat{\chi}(\omega)|^2\,\widehat{W}(\omega+E)$$

Effective temperature (cf. detailed balance)

$$\frac{F_{\chi}(-E)}{F_{\chi}(E)} = e^{E/T_{\chi}} \quad \Rightarrow \quad \boxed{T_{\chi} = \frac{E}{\ln\left(\frac{F_{\chi}(-E)}{F_{\chi}(E)}\right)}} \qquad T_{\chi} = T_{\chi}(E)$$

Long interaction duration

$$\frac{|\widehat{\chi}(\omega)|^2}{\Delta \tau} \xrightarrow{\Delta \tau \to \infty} 2\pi \delta(\omega) \quad \Rightarrow \quad \frac{F_{\chi}(E)}{\Delta \tau} \xrightarrow{\Delta \tau \to \infty} \widehat{W}(E)$$

$$W(\tau',\tau'')=W(\tau'-\tau'',0)=:W(\tau'-\tau'')$$
 time translation invariance
$$\Rightarrow F_{\chi}(E)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathrm{d}\omega\,|\widehat{\chi}(\omega)|^2\,\widehat{W}(\omega+E)$$

Effective temperature (cf. detailed balance)

$$\frac{F_{\chi}(-E)}{F_{\chi}(E)} = e^{E/T_{\chi}} \quad \Rightarrow \quad \boxed{T_{\chi} = \frac{E}{\ln\left(\frac{F_{\chi}(-E)}{F_{\chi}(E)}\right)}} \qquad T_{\chi} = T_{\chi}(E)$$

Long interaction duration

$$\frac{|\widehat{\chi}(\omega)|^2}{\Delta \tau} \xrightarrow{\Delta \tau \to \infty} 2\pi \delta(\omega) \quad \Rightarrow \quad \frac{F_{\chi}(E)}{\Delta \tau} \xrightarrow{\Delta \tau \to \infty} \widehat{W}(E)$$

$$\widehat{W}(E)$$
 discontinuous at $E=0$ for $2+1$ massless field! Ouch.

Duration inverse power-law long at small gap:

$$\Delta \tau \propto \lambda \propto \frac{1}{|E|^{\alpha}} \qquad \alpha > 0$$

Adiabatic

Plateau

Duration inverse power-law long at small gap:

$$\Delta \tau \propto \lambda \propto \frac{1}{|E|^{\alpha}} \qquad \alpha > 0$$
Adiabatic
$$\chi_{\lambda}(\tau) = \chi_{1}(\tau/\lambda)$$
Plateau

$$\Rightarrow \frac{T_{\text{circ}}(E)}{T_{\text{lin}}(E)} \xrightarrow{|E| \to 0} 0$$
 as **positive power-law** in $|E|$

Duration inverse power-law long at small gap:

$$\Delta \tau \propto \lambda \propto \frac{1}{|E|^{\alpha}} \qquad \alpha > 0$$

Adiabatic

Plateau

$$\Rightarrow \frac{T_{\text{circ}}(E)}{T_{\text{lin}}(E)} \xrightarrow{|E| \to 0} 0$$
 as **positive power-law** in $|E|$

Epic failure?

Duration inverse power-law long at small gap:

$$\Delta \tau \propto \lambda \propto \frac{1}{|E|^{\alpha}} \qquad \alpha > 0$$

Adiabatic

Plateau $\tau_s \sim \lambda \tau_p$

$$\Rightarrow \frac{T_{\rm circ}(E)}{T_{\rm lin}(E)} \xrightarrow{|E| \to 0} 0$$
 as positive power-law in $|E|$

Instructive

Epic failure: comes from $\int_{-\infty}^{\infty} d\tau \, \chi(\tau) > 0$ relax this!

- $\frac{\left|\widehat{\chi}_{\lambda}(\omega)\right|^2}{\lambda} \xrightarrow[\lambda \to \infty]{} 2\pi\delta(\omega)$ long time limit
- $\frac{T_{\rm circ}(E)}{T_{\rm lin}(E)}$ limit positive as $E \to 0$ with $\lambda \to \infty$

- $\frac{\left|\widehat{\chi}_{\lambda}(\omega)\right|^2}{\lambda} \xrightarrow[\lambda \to \infty]{} 2\pi\delta(\omega)$ long time limit
- $\frac{T_{\rm circ}(E)}{T_{\rm lin}(E)}$ limit positive as $E \to 0$ with $\lambda \to \infty$

$$\Rightarrow \int_{-|E|}^{|E|} d\omega \, \frac{|\widehat{\chi}_{\lambda(E)}(\omega)|^2}{\lambda(E)} = o(|E|) \text{ as } E \to 0$$

- $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda} \xrightarrow[\lambda \to \infty]{} 2\pi\delta(\omega)$ long time limit \longleftarrow
- $\frac{T_{\rm circ}(E)}{T_{\rm lin}(F)}$ limit positive as $E \to 0$ with $\lambda \to \infty$ conflict?

$$\Rightarrow \int_{-|E|}^{|E|} d\omega \, \frac{|\widehat{\chi}_{\lambda(E)}(\omega)|^2}{\lambda(E)} = o(|E|) \text{ as } E \to 0$$

Wish list

- $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda} \xrightarrow[\lambda \to \infty]{} 2\pi\delta(\omega)$ long time limit \longleftarrow
- $\frac{T_{\rm circ}(E)}{T_{\rm lin}(E)}$ limit positive as $E \to 0$ with $\lambda \to \infty$ No conflict!

$$\Rightarrow \int_{-|E|}^{|E|} d\omega \, \frac{|\widehat{\chi}_{\lambda(E)}(\omega)|^2}{\lambda(E)} = o(|E|) \text{ as } E \to 0$$

• Give $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda}$ two (or more) bumps $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda}$

- $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda} \xrightarrow[\lambda \to \infty]{} 2\pi\delta(\omega)$ long time limit \longleftarrow
- $\frac{T_{\text{circ}}(E)}{T_{\text{lin}}(F)}$ limit positive as $E \to 0$ with $\lambda \to \infty$ No conflict!

$$\Rightarrow \int_{-|E|}^{|E|} d\omega \, \frac{|\widehat{\chi}_{\lambda(E)}(\omega)|^2}{\lambda(E)} = o(|E|) \text{ as } E \to 0$$

- Give $\frac{|\widehat{\chi}_{\lambda}(\omega)|^2}{\lambda}$ two (or more) bumps
- $0 = \widehat{\chi}_{\lambda}(0) = \int_{-\infty}^{\infty} d\tau \, \chi_{\lambda}(\tau)$
 - $\Rightarrow \chi_{\lambda}$ changes sign somewhere
- See paper for examples

$$\Rightarrow \frac{T_{\mathsf{circ}}(E)}{T_{\mathsf{lin}}(E)} = \frac{1}{I(v)} + o(1) \text{ as } E \to 0 \text{ with } \lambda \to \infty$$

$$I(v)=rac{4v}{\pi^2}\int_0^\infty \mathrm{d}z \Biggl(rac{1}{\sqrt{1-rac{v^2\sin^2z}{z^2}}}-1\Biggr)$$

4. Summary and outlook

- Circular acceleration Unruh effect
 - ▶ Differs from the linear acceleration effect
 - ► Strongly so for 2+1 massless field at small energies
 - Occurs in analogue spacetime
- Small energy effect recoverable in controlled long time limit with sign-changing coupling
- Sign change implementable in analogue spacetime

4. Summary and outlook

- Circular acceleration Unruh effect
 - ▶ Differs from the linear acceleration effect
 - ► Strongly so for 2+1 massless field at small energies
 - Occurs in analogue spacetime
- Small energy effect recoverable in controlled long time limit with sign-changing coupling
- Sign change implementable in analogue spacetime
- Mathematical framework: "asymptotically scaled" switchings
 - \Rightarrow controls both χ_{λ} and $\widehat{\chi}_{\lambda}$

4. Summary and outlook

- Circular acceleration Unruh effect
 - Differs from the linear acceleration effect
 - ► Strongly so for 2+1 massless field at small energies
 - Occurs in analogue spacetime
- Small energy effect recoverable in controlled long time limit with sign-changing coupling
- Sign change implementable in analogue spacetime
- ► Mathematical framework: "asymptotically scaled" switchings
 - \Rightarrow controls both χ_{λ} and $\widehat{\chi}_{\lambda}$

Thank you

Thank you Jurek

Supplementary

Examples of χ_{λ} for which $\int_{-\infty}^{\infty} d\tau \, \chi_{\lambda}(\tau) = 0$.

Corresponding $\widehat{\chi}_{\lambda}$. Note that $\widehat{\chi}_{\lambda}(0) = 0$.