
Topos-theoretic extension
of vacuum algebraic quantum field theory

over curved space-times

Ryshard-Pavel Kostecki

Research Center for Quantum Information, Slovak Academy of Sciences
www.fuw.edu.pl/∼kostecki

Jerzy Lewandowski Memorial Conference
Warszawa, 18.IX.2025

https://www.fuw.edu.pl/~kostecki


dedicated to the memory of

Marek Zawadowski (1960–2024) Jurek Lewandowski (1959–2024)



I. Outline

1) Causal logics:
subsets of a lorentzian space-time, closed w.r.t. some form of causal signalling
(e.g., by time-like curves), form orthocomplemented lattices.

2) Haag’s «tentative postulate»:
vacuum sector of a.q.f.t. over Minkowski space-time given by a
homomorphism from a causal logic into a lattice of factor von Neumann
subalgebras.

3) Weakening of Haag’s postulate:
not a homomorphism, but a Galois connection (a pair of adjoint functors
between lattices: one preserves ∨, another preserves ∧).

4) Spectral presheaf:
a presheaf of Stone spectra of boolean subalgebras of the orthocomplemented
lattice, and embedding of lattice into this presheaf.

5) Spectral presheaf extension of causal logics and von Neumann subfactor
lattices:
a) paraconsistency of nonsignalling
b) causal boundary operator
c) emergence of causal sublattice
d) nontrivial bi-Heyting modal operators ↔ closed time-like curves (?)
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II. Main motivations

1) Spectral presheaf formalism was so far applied only to the lattices of
projections in von Neumann algebras, in the context of foundations of
quantum mechanics. Our work brings it into new contexts of causal
structure of lorentzian space-times, and vacuum a.q.f.t. over them.

2) The lattice structure of causal logics encodes only some aspects of the
causal structure of space-time. Extension with spectral presheaves
should allow to encode more structure.

3) Haag’s «tentative postulate» is generally too strong. The proposed
weakening is natural from the category-theoretic perspective, and
combines well with the spectral presheaf formalism. So it may lead to
some new insights.
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III. Orthocomplemented lattices
von Neumann’32, Birkhoff–von Neumann’36, Husimi’37, Maeda’55, Loomis’55

A partially ordered set (L,≤) is a bounded lattice iff
I ∃ a supremum/join x ∨ y ∈ L ∀x , y ∈ L,
I ∃ an infimum/meet x ∧ y ∈ L ∀x , y ∈ L,
I ∃ a greatest element 1 ∈ L,
I ∃ a smallest element 0 ∈ L.

A bounded lattice is complete iff all of its subsets have meets and joins.
A bounded lattice is orthocomplemented iff ∀x ∈ L ∃x⊥ ∈ L s.t.

I x⊥⊥ = x ,
I x⊥ ∨ x = 1, (equivalently: x⊥ ∧ x = 0)
I if x ≤ y then x⊥ ≥ y⊥ ∀y ∈ L.

An orthocomplemented lattice (L,⊥ ) is orthomodular iff
x ∨ y = ((x ∨ y) ∧ y⊥) ∨ y ∀x , y ∈ L.
A boolean algebra is an orthomodular lattice (L,⊥ ) satisfying
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) ∀x , y , z ∈ L.
Example: The set of all projections on a Hilbert space, or in any W∗-algebra,
is an orthomodular lattice: 0 := 0, 1 := I, P ≤ Q := P = PQ, P⊥ := I− P,
ran(P ∨ Q) := ran(P) ∪ ran(Q), P ∧ Q := (P⊥ ∨ Q⊥)⊥. Its boolean
subalgebras are the same as the sets of mutually commuting projectors.
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IV. Causal logics (I)
Cegła–Jadczyk’77’79, Cegła–Florek’79’81’05’06, Casini’02’03, Cegła–Florek–Jancewicz’17

Let (M, g) := arbitrary (≥ 2)-dimensional lorentzian space-time.
For S ⊆ M, let S⊥ := {all x ∈ M not connected with S by a time-like curve}.

The set L(M,g) of subsets S ⊆ M, s.t. S = S⊥⊥, equipped with
I S1 ≤ S2 := S1 ⊆ S2,
I S1 ∧ S2 := S1 ∩ S2,
I S1 ∨ S2 := (S1 ∪ S2)⊥⊥,

is a complete orthomodular lattice.
Boolean subalgebras of L(M,g) = sets generated by (·)⊥⊥ from the subsets of
achronal surfaces of (M, g).
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V. Causal logics (II)

Cegła’89, Casini’02’03, Nobili’06

If S⊥ := {all x ∈ M not connected with S by a time-like or null-like curve},
then L(M,g) is orthocomplemented but not orthomodular.
Lattices defined by discretised space-times are also orthocomplemented but
not orthomodular.
Nobili’06: «(...) it is difficult to define unambiguously (...) the boundaries of
causal completions».
L(M,g) does not satisfy so-called “covering property”1, that is always satisfied
by the orthomodular lattice of projections LProj(N ) in any W∗-algebra N , so
L(M,g) cannot be represented by LProj(N ).

1An orthomodular lattice (L,⊥ ) has the covering property iff

∀x, y ∈ L if (y is an atom, y ∨ y⊥ 6= 1) then x ∧ (x⊥ ∨ y) is an atom,

where z ∈ L is an atom iff 0 < z and there exists no w ∈ L s.t. 0 < w < z.
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VI. Orthocomplemented lattice of factor sub-W∗-algebras

von Neumann’29, Haag–Schroer’62, Haag–Kastler’64, ..., Haag’92/’96

Given a W∗-algebra N , let A, A1, and A2 be sub-W∗-algebras of N .
A commutant of A in N := A• := {x ∈ N : xy = yx ∀y ∈ A}.
A1 ∧ A2 := the largest sub-W∗-algebra of N contained in A1 and A2.
A1 ∨ A2 := the smallest sub-W∗-algebra of N containing A1 and A2.
This implies:

I A1 ∧ A2 = A1 ∩ A2; A1 ∨ A2 = (A1 ∪ A2)••;
I (A1 ∧ A2)• = A•1 ∨ A•2; (A1 ∨ A2)• = A•1 ∧ A•2;
I N • = CI; (CI)• = N .
A is a factor iff A ∩A• = CI (⇐⇒ A∨A• = N ).
Hence: the set LN of factor sub-W∗-algebras of a factor W∗-algebra N ,
equipped with (∨,∧,• , 0 := CI, 1 := N ) is an orthocomplemented lattice.
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VII. Vacuum algebraic q.f.t.: Haag’s «tentative postulate»
Araki’61, Haag–Schroer’62, Haag–Kastler’64, ..., Haag’92/’96

Minimal setting for algebraic q.f.t.:
1) a functor A from the category of subsets of space-time with embeddings

as morphisms to the category of sub-W∗-algebras of a W∗-algebra with
embeddings as morphisms,

2) if S1 ⊆ S2 then A(S1) ⊆ A(S2),
3) if S =

⋃
j Sj then A(S) =

∨
j A(Sj) = (

⋃
j A(Sj))••,

4) if S1 ⊆ S⊥2 then A(S1) ⊆ (A(S2))• (=: causality).
Haag–Schroer duality property := (A(S⊥) = (A(S))•).
Haag’92/’96 «tentative postulate»:
1) consider an orthomodular lattice (L(M,g),

⊥ ), where (M, g) is a Minkowski
space-time, and ⊥ is a time-like nonsignalling;

2) consider an orthocomplemented lattice (LN ,• ) of factor sub-W∗-algebras
of a factor W∗-algebra N ;

3) an algebraic q.f.t., for the vacuum sector of the theory, is given by an
orthocomplemented lattice homomorphism (L(M,g),

⊥ )→ (LN ,• ).
In general, Haag’s «tentative postulate» is too strong:
1) the Haag–Schroer duality does not hold in several models;
2) ∧-preservation is usually not required and not verified.
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VIII. Vacuum pre-a.q.f.t.: beyond Haag’s «tentative postulate»

RPK’24

Let (M, g) be any lorentzian space-time, and (L(M,g),
⊥) be a causal logic.

Consider the following categorical reformulation, and weakening, of Haag’s
postulate:

a vacuum pre-a.q.f.t. := an injective, (0, 1,∨)-preserving ≤-monotone functor
N[ : (L(M,g),

⊥ )→ (LN ,• ), satisfying N[((·)⊥) ≤ (N[(·))• (“causality”).

By the adjoint functor theorem, N[ has a surjective, (0, 1,∧)-preserving
≤-monotone adjoint N] : (LN ,• )→ (L(M,g),

⊥ ), i.e.

N[(x) ≤ y ⇐⇒ x ≤ N](y),

so N[ a N] is a monotone Galois connection.
We will say that N[ satisfies the Haag–Schroer duality iff
N[((·)⊥) = (N[(·))•.
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IX. Emergence in vacuum pre-a.q.f.t. (I)

RPK’25

Haag’s «tentative postulate» of an orthocomplemented lattice
homomorphism H : (L(M,g),

⊥ )→ (LN ,• ) contains implicitly a statement of
emergence of the causal logic structure from the structure of a factor
sub-W∗-algebras for a sublattice of (L(M,g),

⊥ ) on which H is an isomorphism.

The vacuum pre-a.q.f.t. N[ : (L(M,g),
⊥ )→ (LN ,• ), when combined with its

right adjoint functor N] : (LN ,• )→ (L(M,g),
⊥ ), induces an equivalence of

sublattices defined by {x ∈ L(M,g) : N] ◦N[(x) ≤ x} and
{y ∈ LN : y ≤ N[ ◦N](y)}, which can be seen as emergence over a
restricted domain:

(L(M,g),
⊥)

N[

++
(LN , •)

N]

ll
a

N] ◦N[(L(M,g),
⊥ )

� ?

OO

∼= // N[ ◦N](LN ,• )
� ?

OO

We will call it a strong emergence, if N[ satisfies the Haag–Schroer duality.
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X. Spectral presheaf
Isham–Butterfield’98, Döring–Isham’08, Cannon’13, Cannon–Döring’18

Stone’36 duality:
I Every boolean algebra B determines a Stone space SB := a set of

nonzero boolean homomorphisms B → {0, 1}, equipped with a suitable
(totally disconnected compact Hausdorff) topology.

I Given any t.d.c.H. topological space S , the set of all closed-and-open
subsets of S forms a boolean algebra BS .

I SBS = S , BSB = B.
Let L be a complete orthomodular lattice.
Let B(L) := a category with:
{objects := boolean subalgebras of L; morphisms := inclusions}.
A spectral presheaf := a contravariant functor ΣL : B(L)→ Set, s.t.
{B 7→ SB ; (B1 ↪→ B2) 7→ restriction: (SB2 → SB1)}.
Subclop(ΣL) := set of subfunctors F of ΣL, s.t. F (B) is a closed-and-open set
∀B ∈ Ob(B(L)).
Subclop(ΣL) is a complete lattice, when equipped with:
x ≤ y : ⇐⇒ xB ⊆ yB ∀B ∈ Ob(B(L)),
(p ∧ q)B := int(pB ∩ qB),
(p ∨ q)B := cl(pB ∪ qB).
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XI. Outer daseinisation and paraconsistency
de Groote’05, Döring–Isham’08, Döring’16, Cannon’13, Cannon–Döring’18, Eva’15’16,
Döring–Eva–Ozawa’21

Consider: δB(x) :=

s ∈ SB : s

∧
{y ∈ B : y ≥ x}︸ ︷︷ ︸

best approx. of x in B

 = 1

︸ ︷︷ ︸
elements of SB for which the best approx. of x holds

∀B ∈ Ob(B(L)).

An outer daseinisation of x ∈ L := a contravariant functor δ(x) : B(L)→ Set,
s.t. {B 7→ δB(x) ⊆ SB ; (B1 ↪→ B2) 7→ restriction: (SB2 → SB1)}.
δ : L→ Subclop(ΣL) is an injective, (0, 1,∨)-preserving map.
By an adjoint functor theorem for posets, there exists a surjective,
(0, 1,∧)-preserving map ε : Subclop(ΣL)→ L, s.t. δ(x) ≤ y ⇐⇒ x ≤ ε(y),
i.e. δ a ε is a Galois connection.
((·) := δ((ε(·))⊥) is a proper paraconsistent negation on Subclop(ΣL), i.e.
x ∧(x ≥ 0 and (x ∧(x = 0 iff x ∈ {0, 1}). I.e. ( does not satisfy the law
of noncontradiction (ex falso quodlibet).
Eva’15’16 (claim, no proof): (Subclop(ΣL),(), equipped with implication
x ⇒ y :=(x ∨ y , satisfies the axioms and rules of inference of the relevant
paraconsistent logic DL (of Routley’77).
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XII. DK and DL logics

Routley–Meyer’76, Routley’77
Axioms of DK:
A1) a . a (identity),
A2a) a ∧ b . a (left conjuctive implication),
A2b) a ∧ b . b (right conjuctive implication),
A3) (a ∧ (b ∨ c)) . ((a ∧ b) ∨ (a ∧ c)) (distribution),
A4) ((a . b) ∧ (b . c)) . (a . c) (conjuctive syllogism),
A5) ((a . b) ∧ (a . c)) . (a . (b ∧ c)) (composition),
A6) (a . ∼b) . (b . ∼a) (contraposition),
A7) ∼∼a . a (double negation elimination).
Deductive inference rules of DK:
R1) (a, b) ` a ∧ b (adjunction),
R2) (a, a . b) ` b (modus ponens),
R3) ((a . b), (c . d)) ` (b . c) . (a . d) (affixing).
DL := DK with an additional axiom: (a . ∼a) . ∼a (reduction).
There are available additional axioms and rules for extending these logics with
quantifiers and propositional constants.
For further purposes we will define:

I DL0 := DL minus A4 minus R2 minus R3,
I DK0 := DK minus A4 minus R2 minus R3.
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XIII. Paraconsistent logic in a spectral presheaf
RPK’24, *B.Engel–RPK’25

1) Assume: ∼=(,
. =⇒, where x ⇒ y :=(x ∨ y ,
(a, b ` c) = (a ∧ b ≤ c).
Then the axiom A4 (i.e. ((a⇒ b) ∧ (b ⇒ c))⇒ (a⇒ c))* and two rules of
inference of DL (affixing and modus ponens) are, contrary to Eva’s claim, not
provable in (Subclop(ΣL),(,⇒), so the latter is a model of a weaker
paraconsistent logic, DL0.

2*) We prove a no-go theorem for modus ponens ((a, a . b) ` b) on
(Subclop(ΣL),(, .) for a rich family of possible implications . that are
definable using( (including ⇒).

3) Lack of modus ponens is problematic, since it is a main rule of deductive
inference in many logical systems.

4*) We introduce a sublattice
∧
δ(L) := {

∧
n δ(an) : n ∈ N, an ∈ L} of

Subclop(ΣL), for which we establish modus ponens, under three different
implications constructed from( (but not for ⇒):

I a .s b :=(a ∨(((a ∧ b);
I a .c b :=(b .s(a;
I a .r b :=((((a .s b) ∧ (a .c b)).
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XIV. Representation of causal logic in spectral presheaf
RPK’19/’24/’25

We postulate to study L(M,g) in terms of ΣL(M,g)
and Subclop(ΣL(M,g)

).
The Cannon–Döring–Eva construction works as well without assuming
orthomodularity of L.
The only thing that gets lost with such a weakening is characterisation of L by
ΣL up to an isomorphism.

Results:
1) Causal nonsignalling (in different variants), encoded by ⊥ on L(M,g), is

represented, via a Galois connection δ a ε, by a proper paraconsistent
negation ( on Subclop(ΣL(M,g)

), satisfying the rules and axioms of DL0 logic.
2) Since δ a ε is monotone, the strengthening (resp., weakening) of nonsignalling

corresponds to strengthening (resp., weakening) of paraconsistent negation.
3) We introduce a boundary operator for (, ∂S := S ∧(S . It satisfies:

∂(x ∧ y) = (∂x ∧ y) ∨ (x ∧ ∂y) (Leibniz rule),

x = ∂x ∨((x .

and it encodes the properties of the causal boundary of the presheaves
representing causally complete sets.
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XV. Spectral presheaf vacuum pre-a.q.f.t (Jenseits von Haag und Dasein)

RPK’24

Combining earlier constructions, we define a spectral presheaf vacuum
pre-a.q.f.t. as an injective, (0, 1,∨)-preserving functor

M[ : (Subclop(ΣL(M,g)
),()→ (Subclop(ΣLN ),−−•),

such that:
1) M[(((·)) ≤ −−•(M[(·)) (“paraconsistent causality”),
2) the following diagram commutes:

(Subclop(ΣL(M,g)
),()

M[
// (Subclop(ΣLN ),−−•)

(L(M,g),
⊥)

δ

OO

N[
// (LN , •).

δ

OO

We will say that a spectral presheaf vacuum pre-a.q.f.t. M[ satisfies the
paraconsistent Haag–Schroer duality iff M[(((·)) = −−•(M[(·)).
By the adjoint functor theorem, M[ determines the right adjoint functor
M] : (Subclop(ΣLN ),−−•)→ (Subclop(ΣL(M,g)

),().
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XVI. Emergence in vacuum pre-a.q.f.t. (II)
RPK’25

The adjunctions

(Subclop(ΣL(M,g)
),()

M[

,,

ε

��

(Subclop(ΣLN ),−−•)

M]

mm

ε

��
(L(M,g),

⊥)

δ

GG

N[

++
(LN , •)

δ

GG

N]

ll

a

a

a a

induce the “emergent” equivalence:

{x ∈L(M,g) : ε ◦M] ◦M[ ◦ δ(x)≤x} ∼= {y ∈Subclop(ΣLN ) : y≤M[ ◦ δ ◦ ε ◦M](y)},

which is “strong” iff M[ satisfies the paraconsistent Haag–Schroer duality.

If M] satisfies the inverse of paraconsistent Haag–Schroer duality, i.e.

M](−−•(·)) =((M](·)), then the subfactor boundaries
−−•
∂A are mapped by

M] into the causal boundaries
(
∂ (M](A)).
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XVII. Summary

1) Clarification of the structure of intrinsic paraconsistent logic of (any)
spectral presheaves

2) Spectral presheaves over causal logics:
a) Paraconsistency of nonsignalling
b) Causal boundary operator

3) Spectral presheaves over factor von Neumann subalgebras
4) Category-theoretic weakening of Haag’s «tentative postulate» on

vacuum a.q.f.t.
5) Lifting this vacuum a.q.f.t. ansatz to a pair of adjoint functors between

the respective spectral presheaves
6) A prescription for emergence of causal sublogic from factor von

Neumann algebra sublattice in both cases
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XVIII. Bi-Heyting algebras

Skolem’1919, Zarycki’27, Heyting’30, Birkhoff’40, McKinsey–Tarski’46, Klemke’71,
Rauszer’71’74, Lawvere’76,’86,’89,’91

A bounded latice (L,≤,∧,∨, 0, 1) is called:
I Heyting iff ∀x , y ∈ L ∃! x → y ∈ L ∀z ∈ L

z ≤ x → y : ⇐⇒ z ∧ x ≤ y ;

I co-Heyting iff ∀x , y ∈ L ∃! x y ∈ L ∀z ∈ L
z ≥ x y : ⇐⇒ z ∨ y ≥ x ;

I bi-Heyting iff it is Heyting and co-Heyting.
Defining ¬x := x → 0 and ¬x := 1 x (i.e. ¬x := the largest element of L
s.t. ¬x ∧ x = 0; ¬x := the smallest element of L s.t. ¬x ∨ x = 1), we get:

I ¬x ∨ x ≤ 1, i.e. ¬ does not satisfy tertium non datur (law of excluded middle),
I ¬x ∧ x ≥ 0, i.e. ¬does not satisfy ex falso quodlibet (law of noncontradiction).

In general, logics invalidating ex falso quodlibet are called paraconsistent.
Zarycki–Lawvere boundary operator, ∂(·) := (·) ∧ ¬(·), satisfies:

∂(x ∧ y) = (∂x ∧ y) ∨ (x ∧ ∂y) (Leibniz rule),

x = ∂x ∨ ¬¬x .
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XIX. Nontrivial modality implies closed time-like (or vertex) curves?
RPK’19/’24, *B.Engel–RPK’25
Modal operators in Subclop(ΣL(M,g)

) vs closed time-like/vertex curves in (M, g):
a) Subclop(ΣL) has a structure of a bi-Heyting algebra [Döring’11].
b) Every bi-Heyting algebra H allows to construct modal operators � : H → H

and ♦ : H → H, defined by � :=
∧

n∈N�n and ♦ :=
∨

n∈N ♦n, where
�0 := idH =: ♦0, �n+1 := ¬ ¬�n, and ♦n+1 := ¬¬♦n [Reyes–Zolfaghari’96].

c) For a W∗-algebra N and L given by a lattice of projections of N , � and ♦ in
(Subclop(ΣL),¬, ¬) are nontrivial only when N has a nontrivial center [Eva’16].

d) For the time-like nonsignalling orthomodular variant of ⊥, L(M,g) has
nontrivial center iff (M, g) contains closed time-like (or vertex) curves (i.e. iff
∃q ∈ M such that I+(q) ∩ I−(q) 6= ∅) [Casini’02].

Combining the above points, we arrive to:
1) Conclusion: if an analogue of c) for orthomodular lattices holds, then

nontrivial bi-Heyting modal operators in Subclop(ΣL(M,g)
) would imply the

presence of closed time-like (or vertex) curves in (M, g).
2*) However: it turns out that Eva’s claim c) is almost certainly wrong, and so

the above reasoning is, by now, nonconclusive.
3*) The benefit: we are working on describing the general structure of the

bi-Heyting modal operators in any spectral presheaves. To be continued...
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