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Precanonical quantization of pure Einsteinian vielbein gravity results in the spin connection foam (SCF) model of quantum spacetime, which is described by one- and two-
point amplitudes on the spin connection bundle satisfying the space-time symmetric precanonical Schrödinger equation. The metric structure emerges as a derived quantity.
The analysis of a nonrelativistic test particle in the gravitational field of a point mass, both immersed in the SCF of Minkowski spacetime, reveals a quantum modification of
the Newtonian dynamics at large distances we term qMOND. A transformation to a non-inertial reference frame, defined by the mean-field acceleration arising from vacuum
fluctuations of SCF, reproduces the Milgromian MOND with a theoretically derived interpolating function. The theory also establishes the relation between the Milgromian
acceleration a0 and the cosmological constant Λ: a0 ∼

√
Λ, Λ ∼ (8πGℏκ)2. Small numerical values of Λ and a0 are linked to a hadronic scale of the parameter κ,

introduced in precanonical quantization while quantizing differential forms (e.g., dx1 ∧ dx2 ∧ dx3 7→ 1
κγ

0 in (3 + 1)-dimensions) and is argued, within the theory, to be

connected to the mass gap in the pure Yang-Mills sector of the Standard Model: ∆m ∼ (g2ℏ4κ)1/3.

1. Precanonical quantum gravity (pQG)

Precanonical quantization is based on a Dirac quan-
tization of a generalization of Poisson brackets to a
space-time symmetric generalization of the Hamilto-
nian formalism to field theory (the De Donder–Weyl
theory) which requires no space-time decomposition.

Vielbein Einstein-Palatini Lagrangian density:
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De Donder-Weyl Hamiltonian (DWH) formulation

pα
ωIJβ

:=
∂L

∂ ∂αωIJ
β

≈ 1

8πG
ee

[α
I e

β]
J , pα

eIβ
:=

∂L

∂ ∂αeIβ
≈ 0,

eH := pω∂ω + pe∂e− L ≈ −pα
ωIJβ

ωIK
α ωβK

J − 1

8πG
Λe.

⇒ Singular DWH formulation with second class con-
straints → generalized (Poisson-Gerstenhaber)-Dirac
brackets of forms → very simple generalized Dirac
brackets of fundamental variables, e.g.,

{[pαω, ω′υβ ]}D = δαβδ
ω′
ω , {[pαe , e′υα′ ]}D = 0,

{[pαe , pωυα′ ]}D= {[pαe , ωυα′ ]}D= {[pαω, e′υα′ ]}D= 0,

υα := ∂α dx0 ∧ dx1 ∧ ... ∧ dx3.

Quantization [Â, B̂] = −iℏŸ�e{[A,B ]}D yields
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The UV parameter [κ] = [cm−3] appears on dimensional grounds,
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Precanonical Schrödinger equation for quantum gravity

pSE : iℏκ“̸∇Ψ = “HΨ ⇒
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Clifford-valued Ψ = Ψ(ω, x); λ := Λ
(8πGℏκ)2 is dimension-

less, depends on the operator ordering of ω and ∂ω.

The scalar product : ⟨Φ|Ψ⟩ :=Tr

∫
Φ [̂dω]Ψ, Ψ:=γ0Ψ†γ0,

[̂dω] ∼ ê−6
∏
µIJ

dωIJ
µ , ê−1 is constructed from êβI .

Few consequences of pQG
⇒ The spin connection foam (SCF) picture of the
geometry of quantum gravity in terms of the Clifford-
algebra-valued precanonical wave function on the
bundle of spin connection coefficients over space-
time, Ψ(ω, x) = ⟨Ψ|ω, x⟩, and the transition ampli-
tudes ⟨ω, x|ω′, x′⟩, the Green functions of pSE and
a quantum analog of connection.
⇒ The normalizability ⟨Ψ|Ψ⟩ < ∞ leads to the
quantum-gravitational avoidance of curvature singu-
larities by the precanonical wave function.
⇒ In the context of quantum cosmology, Ψ(ω, x)
defines the statistics of local fluctuations of spin-
connection, the Hubble parameter ȧ/a classi-
cally, not the “distribution of quantum universes
according to the Hubble parameter” as in the
mini-superspace quantum cosmology resulting from
canonical quantization of GR.
⇒ The evolution of matter/radiation on the back-
ground of quantum gravitational fluctuations whose
statistics is predicted by pSE may lead to observable
consequences for the distribution of matter/radiation
at large cosmological scales.

2. Quantum states of Minkowski spacetime

ηµν = (+1,−1,−1,−1) ⇒ ωIJ
µ = 0 ⇒ simplifies pSE:

γIJ∂ωIJµ ∂µΨ = 0.

From ⟨ĝµν⟩(x) = Tr
∫
d24ω Ψ(ω, x)ê−6ĝµνΨ(ω, x) = ηµν

⇒ ĝµνΨ = −(8πGℏκ)2ηIKηJL∂ωIJµ ∂ωKL
ν
Ψ = ηµνΨ, (1)

and ηµν∂µ∂νΨ = 0.

⇒ Quantum states of (1+3)-dim Minkowski spacetime:

• light-like modes kµkν=0 along the spacetime dims;

• 4 massive (Yukawa) modes given by (1) in (3+3)-dim
subspaces of ωIJ

µ for each µ = 0, 1, 2, 3;

• the range of the massive modes in ω-space defines
an invariant scale of accelerations a∗ = 8πGℏκ .

3. κκ from the mass gap in pure gauge theory

Precanonical quantization of pure Yang-Mills theory ⇒“H =
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The spectrum of masses of propagating modes =

eigenvalues of the DW Hamiltonian operator “H for

iℏκγµ∂µΨ = “HΨ, Ψ = Ψ(Aa
µ, x

µ). (3)

The standard functional Schrödinger equation for the
wave functional Ψ([A(x)], t) can be derived from (2), (3)
using the (3+1) decomposition and the “dequantization
map” 1

κγ0 7→ dx. In terms of the multiple Volterra prod-
uct integral over x,
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For SU(2) theory : ⟨ 1
κ
Ĥ⟩ >
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32
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|ai′1|,

ai′1 is the first root of the derivative of Airy function.

(5)

⇒ From QCD mass gap ∆m∼ (g2ℏ4κ)1/3 ∼ 100±1GeV,
and g = gs(Q = 0) ≈ 2π, and a factor ∼ 101 error in the
estimation (5) ⇒

κ ∼100±2×3GeV3.

4. The cosmological constant

Weyl reordering in the 2nd term of pSE ⇒ λ = 3,

⇒ Λ = 3(8πGℏκ)2 ∼ 10−45±2×6 cm−2 (6)

originates from quantum fluctuations of spin connection.
The observable Λ is obtained withκ∼10−3GeV3.

5. The minimal acceleration

With the hadronic scale of κ, the value of

a∗ := 8πGℏκ =
»
Λ/3 ∼ 10−23±3×2 cm−1

is comparable with the phenomenological Milgromian
acceleration from MOND: a0 ≈ 10−29cm−1.
⇒ This implies the threshold of accelerations a∗ =
8πGℏκ emerges from quantum fluctuations of spin con-
nection around ω = 0, makes the classical notion of
inertial frames not applicable below a∗.
⇒ For low accelerations below a∗ the usual dynamics
is modified by the quantum fluctuations of the spin con-
nection, whose statistics is described by the pSE.
⇒ The mysterious relation from MOND [18]: a0 ∼

√
Λ,

emerges as an elementary consequence of pQG.

6. qMOND from pQG

Nonrelativistic geodesic in the fluctuating gravitational
field Γ̃ of the body of mass M (static approximation)

ẍi = −Γ̃i
00 = −GM

xi

r3
−ω̃i, ⟨ω̃i⟩ = 0, ωi := ωi0

0 = Γi
00. (7)

In the context of pQG, the values of spin connection at
a point are probabilistically distributed according to the
wave function Ψ(ω, x) obeying the static limit of (1)

ηij∂ωi00
∂
ω
j0
0
Ψ = − 1

(8πGℏκ)2
η00Ψ (8)

whose ground state (Yukawa) solution, ω :=
√
(ω0i

0 )
2,

Ψ =
1

π
√
8Gℏκ ω

e−ω/(8πGℏκ), ⟨Ψ|Ψ⟩ = 1. (9)

From the average of the square of (7), ⇒ qMOND law:

a =

…
G2M 2

r4
+ ā2, (10)

where ⟨(ẍi)2⟩ =: a2, ā :=
√

⟨(ω̃i)2⟩ is the fundamental
acceleration due to the omnipresent quantum fluctua-
tions of (static) SCF

From (8) : ā2 =

∫
d3ωiΨω2Ψ =

1

2
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1

2
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⇒ qMOND potential, such that a = −∇Φ(2):

Φ(2)(r) = −GM
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;− ā2r4

G2M 2

ã
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At small r or vanishing ā, Φ(2) ≈ −GM/r.
At large r, Φ(2)(r) ≈ ār (“anti-screening” effect of SCF).

By averaging the 4th and 6th degree of (7), we get more
general higher-order qMOND potentials with the same
asymptotes in terms of the Appel F1 functions,

Φ(4)(r) = −Γ(5/4)Γ(1/2)

Γ(7/4)
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s1 = − 1
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»
−q
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√
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»
−q

2 −
√
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∆ = (q/2)2 + (p/3)3, p = 15
(
b4 − 5ā4

)
/G4M 4,

q =
(
250ā6 − 75ā2b4 + c6

)
/G6M 6 .

A comparison with the following derivation of MOND
from qMOND and discussions of MOND in the Solar
System indicates that a higher-order Φ(2n) may provide
a better fit for Solar System ephemerides than Φ(2)(r),
which is more suitable for galaxy rotation curves.
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7. MOND from qMOND

Non-inertial effects due to ā ̸= 0 (a fictious force):

GM

r2
+ ā = a (13)

⇒ GM

r2
=
√
g2 + ā2 − ā, g = a− ā (14)

This has the form postulated by Milgrom in MOND
(Modified Newtonian Dynamics)

GM

r2
= µ

Å
g

a0

ã
g , (15)

provided that
a0 = 2ā , (16)

and the interpolating function (IF) µ(x)

µ(x) =
1

2x

Ä√
4x2 + 1− 1

ä
, (17)

such that µ(x)|x→∞ → 1 and µ(x)|x→0 → x, interpolates
between the Newtonian dynamics at a ≫ a0 and ”deep-
MOND” at a ≤ a0.
In contrast to the standard MOND framework, where
interpolating functions are postulated to achieve opti-
mal fits with observational data, our approach derives
a theoretically motivated interpolating function that is a
unique solution for the problem of a non-relativistic test
particle in the gravitational field of a point mass M fixed
at the origin.

⇒ Milgromian a0 = 2ā =
√
2 8πGℏκ ≈

…
2

λ

√
Λ.

8. SCF in Galaxies

Orbital motion around point mass M

v(r) =

Å
G2M2

r2
+ ā2r2

ã1/4

. (18)

A minimum at

rm =

…
GM

ā
, vm := v(rm) = (2āGM)1/4. (19)

Very flat parabola in the vicinity of the minimum,

v(r) = (2āGM)1/4 +
ā2

v3m
(r − rm)

2 +O((r − rm)
3), (20)

The first term corresponds to the asymptotic velocity
of flat rotation curves predicted by MOND and aligns
with the phenomenological Baryonic Tully-Fisher rela-
tion, which connects the visible (baryonic) mass of a

galaxy to the velocity in the flat region of its rotation
curve.
For baryonic mass M ∼ 1011M⊙: GM ≈ 1.5 × 10−2 ly,
rm ≈ 5×104 ly, vm ≈ 0.65×10−3 (equivalent to 195 km/s).
With an error margin of ±10%, the rotation velocity v(r)
given by equation (18) can be approximated by a flat
rotation curve of v(r) ≈ 210 km/s within the radial range
of 30 kly to 90 kly.
This result aligns with observed flat rotation curves of
galaxies such as M31 and the Milky Way.
▷ Approximations: Fixed central point mass M and
ignoring correlations in SCF.

9. SCF in the Solar System

SCF correction of about 1% to Sun’s gravity at a helio-
centric distance of

rM =

Å
0.01×

2G2M 2
⊙

ā2

ã1
4

∼ 3× 103 au.

At the current location of the Voyager 1 spacecraft (166
au from the Sun), the deviation is approximately 10−4%.
SCF correction to Kepler’s third law:Å

2π

T

ã2

=
G(M⊙ +M⊕)

R3
+ ā2

R(M⊙ +M⊕)

2GM⊙M⊕
+O(ā4) ,

For the Earth’s orbit, where R is the semimajor axis, this
results in a correction of ∼ 10−9% to the orbital period
(∼ −0.5 ms) and a shift in the locations of the Lagrange
points.
The effects of SCF in the interior of the Solar System
are weaker for higher order qMOND potentials Φ(2n)(r).

10. SCF on Tabletop

M = 1 kg, GM ∼ 10−27 m ⇒ GM/r2 ≫ ā at r ≪ 1m.
⇒ at r = 0.1m from M , the SCF correction is
∼10−2a0 ≈ 10−12 m/s2. For a test mass of 1mg, the cor-
rection to the force is ∼10−18 N.
The sub-attonewton sensitivity of force sensors is al-
ready achievable. Our specific masses here corre-
spond to Oosterkamp e.a. experiments in Leiden.
⇒ A potential avenue for experimental testing of quan-
tum SCF corrections to Newtonian dynamics.

11. Conclusion

• Precanonical quantization of GR leads to a viable
theory of QG (a synthesis of GR and quantum the-
ory) that is capable of explaining already observed
phenomena, such as non-Keplerian galaxy rotation
curves - via theoretically deriving MOND - and ac-
celerated expansion of the universe - via clarifying
the quantum gravitational origin of the cosmological
constant - and also providing realistically verifiable
predictions. Precanonical quantum gravity is

* inherently non-perturbative,
* generally covariant,
* background-independent (requires local fiducial

Minkowski structure),
* mathematically well-defined (yet unclarified issue

with nonpositive Tr(ΨΨ)),
* can work in any number of dimensions and metric

signature, avoids the global hyperbolicity restric-
tion,

* does not require the ”Barbero-Immirzi parameter”
like in LQG,

* both quantizes gravity and “gravitizes” quantum
theory by treating spacetime variables equally.

• The effects of Λ (the simplest dark energy) and a0
(an alternative to dark matter according to MOND),
and their relation a0 ∼

√
Λ can be understood as

manifestations of SCF in pQG.

• Realistic numerical values of Λ and a0 are obtained
for a hadronic scale of κ, which is consistent with its
derived relation to the scale of the mass gap in the
pure quantum YM sector of the Standard Model.

• A non-relativistic test particle within gravitating mass
M immersed in the static non-relativistic approxi-
mation of SCF yields qMOND potentials with linear
asymptotes that match cosmological scale slopes.

• MOND with a theoretically derived interpolating
function is recovered in the non-inertial frame of the
mean field ā of quantum fluctuations in SCF.

• Relaxing the fixed central mass approximation and
taking into account quantum correlations due to
⟨ω1,x1, t|ω2,x2, t⟩ ≠ 0 are work in progress.

• Flat galaxy rotation curves are accommodated by
both MOND and (approximately) qMOND descrip-
tions.

• The linear asymptotes of Φ(2n)(r) potentials lead to
improved early structure formation.

• Realistic prospects exist for laboratory and space
tests of SCF quantum gravity corrections.
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