

SPIN FOAMS AND PONZANO-REGGE

My motivation in giving this talk:

- To introduce spin foams the path integral formulation of loop quantum gravity – to this audience enough for them to appreciate Jerzy's contributions.
- 2. To go over the issue of the **sum over local orientations** in spin foams and associated questions about **correct equations of motion in the classical limit**.
- 3. To look for **guidance** in the original 3D spin-foam model of quantum gravity, **Ponzano-Regge**:
 - a. A similar sum over local orientations is present, also seeming to lead to incorrect equations of motion.
 - b. But we know it has the correct equations of motion flatness. Or do we?
 - **c.** Understand this paradox first in order to understand the issue in the 4D case.

OUTLINE

- I. Spin foams: Motivation
- II. Derivation of amplitude from idea of Plebanski: Gravity as constrained topological field theory.
- III. Resulting models: EPRL and generalizations
- IV. Contributions of Jerzy and collaborators: To bring the covariant and canonical formulations of loop quantum gravity closer.
- V. Classical limit of EPRL: Sum over local orientations and concern with equations of motion.
- VI. Exactly analogous phenomenon in Ponzano-Regge, where equations of motion seem correct. A clear paradox to learn from to guide next steps.

I. Spin foams: Motivation

- a. Path integral formulation of loop quantum gravity
- b. Desire for manifestly space-time covariant formulation of dynamics (as for all path integral approaches)
- c. Provides projector onto physical states: Avoid explicitly solving for the full solution to the Hamiltonian constraint operator.
 - Basis of canonical loop quantum gravity: Spin networks
 - History of elements of this basis:Spin foam

Spin network:

II. Derivation of amplitude from idea of Plebanski: Gravity as constrained topological field theory.

Classical BF theory

$$S_{BF}[B_{\mu\nu}^{IJ}, \omega_{\mu}^{IJ}] := \int \operatorname{tr}(B \wedge F(\omega))$$

$$\delta S_{BF} := \int \operatorname{tr}(\delta B \wedge F(\omega) + B \wedge d_{\omega}\delta\omega) = \int \operatorname{tr}(\delta B \wedge F(\omega) - (d_{\omega}B) \wedge \delta\omega)$$

$$\Rightarrow F \approx 0 \quad \text{and} \quad d_{\omega}B \approx 0 \quad \Rightarrow \quad \text{no local degrees of freedom}$$

Simplicity with Immirzi parameter ⇒ Holst gravity

$$B^{IJ} = \frac{1}{8\pi G} \left((\star e \wedge e)^{IJ} + \frac{1}{\gamma} e^I \wedge e^J \right) \quad \text{for some} \quad e^I_{\mu}$$

$$\Rightarrow S_{BF}[B, \omega] = \frac{1}{8\pi G} \int \left((\star e \wedge e) \wedge F + \frac{1}{\gamma} e \wedge e \wedge F \right) = S_{Holst}[e, \omega]$$

į.

II. Derivation of amplitude from idea of Plebanski: Gravity as constrained topological field theory.

Original Plebanski formulation: • $\gamma = i$ (self-dual action), using spinorial variables

• imposed via Lagrange multiplier

Quantum BF theory: Ooguri model

Discretize on a 2-complex with 4-cells v^* , 3-cells e^* and 2-cells f^* , and $g_e \in SL(2,\mathbb{C})$:

"
$$\int \mathcal{D}B\mathcal{D}\omega \exp\left(iS[B,\omega]\right) = \int \mathcal{D}B\mathcal{D}\omega \exp\left(i\int B \wedge F(\omega)\right) = \int \mathcal{D}\omega\delta(F(\omega)) =$$
"
$$\int \left(\prod_{e \in f} dg_e\right) \prod_{f} \delta\left(\vec{\prod}_{e \in f} g_e\right) = \sum_{\{\rho_f, k_f, j_{fe}\}} \left(\prod_{e \in f} \int d^2 n_{fe}\right) \left(\prod_{f} A_f^{BF}\right) \left(\prod_{v} A_v^{BF}\right)$$

where the sum/integral is over an irrep (ρ_f, k_f) of $SL(2, \mathbb{C})$ for each f, and for each $f \ni e$ a coherent state $|j_{fe}, n_{fe}\rangle \in \mathcal{H}_{\rho_f, k_f}$, $\vec{J}^2|j_{fe}, n_{fe}\rangle = j_{fe}(j_{fe}+1)$, $n_{fe} \cdot \vec{J}|j_{fe}, n_{fe}\rangle = j_{fe}|j_{fe}, n_{fe}\rangle$.

 A_f^{BF} depends on (ρ_f, k_f) and A_v^{BF} on data associated to $f, e \ni v$.

II. Derivation of amplitude from idea of Plebanski: Gravity as constrained topological field theory.

- The data $\rho_f, k_f, j_{ef}, n_{ef}$ determine bivectors B^{IJ}_{ef} via $J^i_{ef} = \epsilon^i_{jk} B^{jk}_{ef}, \quad K^i_{ef} = B^{0i}_{ef}$ with $\vec{J}^2_{ef} \vec{K}^2_{ef} = \rho^2_f k^2_f$ $\vec{J}_{ef} \cdot \vec{K}_{ef} = \rho_f k_f$ $\vec{J}_{ef} = j_f \vec{n}_{ef}$
- Related to bivectors Σ_{ef} via $B_{ef} = \frac{1}{8\pi G} \left(\star \Sigma_{ef} + \frac{1}{\gamma} \Sigma_{ef} \right)$
- "Linear simplicity":
 - For each 3-cell e^* , $\exists N_e^I$ such that $\Sigma_{ef}^{IJ}(N_e)_J = 0 \quad \forall f \ni e$.
 - Ensures all Σ_{ef} are **simple** and hence determine a **2-plane** $f^*(e)$ in Minkowski space.
 - Ensures that, for each 3-cell e^* , all $f^*(e)$ are in same 3-plane $(\perp N_e)$.
 - When critical point equations hold in large spin limit, is equivalent to $\Sigma_{ef}^{IJ} = \int_{f^*(e)} e^I \wedge e^J$ for some constant e^I for each 3-cell e^* , and hence $B_{ef} = \frac{1}{8\pi G} \int_{f^*(e)} \left(\star e \wedge e + \frac{1}{\gamma} e \wedge e \right)$
- Remains to quantize linear simplicity

III. Resulting models: EPRL and generalizations

Restriction to simplicial complex with space-like triangles: EPRL

$$\rho_f/\gamma = k_f = j_{fe} \quad \text{for all} \quad e \in f$$

- Proposed along with Euclidean version by E., Pereira, Rovelli, and Living in 2007.
- Euclidean version for $\gamma < 1$ coincides with model by **Friedel and Krasnov** proposed earlier in **2007**.

General 2-complex with space-like triangles: KKL(-DHR)

- Even though the EPRL derivation of the above condition depended on cell-complex being simplicial, the condition itself does not! It immediately generalizes to a general cell complex.
- The exact same thing happens in the Euclidean signature.
- Was first noticed and proposed by Kaminski, Kisielwoski, and Lewandowski in the Euclidean signature in 2009, and by Ding, Han, and Rovelli in the Lorentzian signature in 2010.

8

III. Resulting models: EPRL and generalizations

Quantum simplicity with time-like triangles: Conrady and Hnybida 2010

Inclusion of cosmological constant: Haggard, Han, Kaminski, Riello 2014-2021

Restriction to a single orientation and removal of degenerate sector: 'proper vertex' E. and Zipfel 2011-2015. Related to later part of talk.

IV. Contributions of Jerzy and collaborators: To bring the covariant and canonical formulations of loop quantum gravity closer.

Spin foams and the Warsaw group

- Jerzy started doing research in spin foams after the EPRL and FK models.
- He invited me to Warsaw in 2007 to give a week of day-long lectures on spinfoams to the quantum gravity group. I believe he invited other spin foam researchers to give similar series of lectures.
- The Warsaw group Jurek and others made many important contributions to spin foams, and is still one of the few leading groups in spin-foams.

IV. Contributions of Jerzy and collaborators: To bring the covariant and canonical formulations of loop quantum gravity closer.

- Kaminski, Kisielowski, and Lewandowski (KKL) generalization:
 - EPRL uses simplicial complexes, so that spin-networks in the histories are always 4-valent. In canonical LQG, such a restriction is not natural – all valences are allowed.
 - KKL provides a very natural generalization of EPRL to include all cell complexes.
 - o has been central to spin foam cosmology (Vidotto 2010-2011).
 - Kisielowski, Lewandowski, and Puchta (2011) also developed a diagrammatic approach to spinfoams that aides with systematically categorizing all spin-foams for given boundary graph, allowing the same authors in (2012) to systematically categorize all foams for Vidotto's dipole cosmology boundary states.
- Kisielowski and Lewandowsk (2018): Derived a spin foam model coupled to a scalar field starting
 from the canonical theory developed by Domagala, Giesel, Kaminksi, and Lewandowski (2010 –
 "Gravity quantized" which Kristina Giesel will talk about in the next talk.)

V. Classical limit of EPRL: Sum over local orientations and concern with equations of motion.

• Large spin limit of EPRL vertex amplitude for non-degenerate data:

$$A_v\left(\{\lambda j_f, \lambda n_{fe}\}\right) \sim \frac{C}{2} \left(e^{iS_{\text{Regge}}} + e^{-iS_{\text{Regge}}}\right)$$

Here $\{n_{fe}\}_{f\in e}$ are the outward normals to the four triangles f^* for each tetrahedron e^* , and γj_f are their areas. That defines each tetrahedron in \mathbb{R}^3 , which are then rotated in Minkowski space to form each 4-simplex.

- Implies sum over local orientation: One orientation variable $\mu_{\sigma} \in \{-1, 1\}$ for each 4-simplex σ .
- In continuum limit:

$$S[g] = \int \mu(x)R(x)\sqrt{\det g(x)}d^4x$$

V. Classical limit of EPRL: Sum over local orientations and concern with equations of motion.

• Equation of motion:

$$\delta S[g] = \int \mu \sqrt{g} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) \delta g^{\mu\nu} d^4 x + \int \mu \partial_{\alpha} \left(\tilde{V}^{\alpha}_{\mu\nu} \delta g^{\mu\nu} + \tilde{W}^{\alpha\beta}_{\mu\nu} \partial_{\beta} \delta g^{\mu\nu} \right) d^4 x$$

$$= \int \mu \sqrt{g} G_{\mu\nu} \delta g^{\mu\nu} d^4 x - \int \left(\partial_{\alpha} \mu \right) \tilde{V}^{\alpha}_{\mu\nu} \delta g^{\mu\nu} d^4 x + \int \left(\partial_{\beta} \left(\tilde{W}^{\alpha\beta}_{\mu\nu} \partial_{\alpha} \mu \right) \right) \delta g^{\mu\nu} d^4 x$$

$$= \int \mu \sqrt{g} \left(G_{\mu\nu} \delta g^{\mu\nu} - g^{-1/2} \mu \tilde{V}^{\alpha}_{\mu\nu} \partial_{\alpha} \mu + g^{-1/2} \mu \partial_{\beta} \left(\tilde{W}^{\alpha\beta}_{\mu\nu} \partial_{\alpha} \mu \right) \right) \delta g^{\mu\nu} d^4 x$$

 \Rightarrow E.O.M. $G_{\mu\nu}$ can be distributional where μ changes sign!

Correct E.O.M. $(G_{\mu\nu}=0)$ only where μ is homogeneous!

13

VI. Exactly analogous phenomenon in Ponzano-Regge, where equations of motion seem correct. But are they?

From spin to connection formulation: Manifest flatness

Given a 3D triangulation Δ with edges ℓ , triangles t, and tetrahedra σ ,

$$W_{PR} = \sum_{\{j_{\ell}\}'} \prod_{\ell} (-1)^{2j_{\ell}} (2j_{\ell} + 1) \prod_{t} (-1)^{j_{1} + j_{2} + j_{3}} \prod_{\sigma} \left\{ \begin{array}{cc} j_{1} & j_{2} & j_{3} \\ j_{4} & j_{5} & j_{6} \end{array} \right\}$$

N.B. $2j_{\ell}$, $j_1 + j_2 + j_3 \in \mathbb{N}$, so signs are well-defined!

where $\{j_{\ell}\}' := \{j_{\ell}\}_{{\ell \in \operatorname{int}\Delta}} \subset \mathbb{N}/2$. Assume, for simplicity, no boundary. Then

$$W_{PR} = \sum_{\{j_{\ell}\}} \int \left(\prod_{t} dg_{t}\right) \prod_{\ell} (2j_{\ell} + 1) \underbrace{\int_{j_{\ell}} g_{3}}_{j_{\ell}} = \int \left(\prod_{t} dg_{t}\right) \prod_{\ell} \sum_{j} (2j + 1) \operatorname{Tr}_{j}(h_{\ell})$$

$$= \int \left(\prod_{t} dg_{t}\right) \prod_{\ell} \delta(h_{\ell}) \quad \text{``} = \int \mathcal{D}\omega \delta(F(\omega)) = \int \mathcal{D}\omega \mathcal{D}e \exp\left(i \int e \wedge F(\omega)\right) = \int \mathcal{D}\omega \mathcal{D}e \exp\left(iS[e, \omega]\right) \text{'`}$$

14

Large spin asymptotics: Locally oriented Regge!

Setting $j_{\ell} = \lambda j_{\ell}^{o} \ (\in \mathbb{N}/2)$ for j_{ℓ}^{o} fixed.

$$\left\{\begin{array}{cc} j_1 & j_2 & j_3 \\ j_4 & j_5 & j_6 \end{array}\right\} \underset{\lambda \to \infty}{\sim} \frac{1}{\sqrt{3\pi V}} \cos \left(\sum_{a=1}^6 j_a \Theta_a + \frac{\pi}{4}\right)$$

[Ponzano and Regge (1968);

Dowdall, Gomes, and Hellmann (2009);

Christodoulou, Långvik, Riello, Röken, and Rovelli (2012)]

where V is the volume of the tetrahedron with edge lengths λj_a and Θ_a is the external dihedral angle at edge a (angle between the normals to the two triangles at a).

implies

(This choice to express the -1's as exponentials is a generalization of that in Chistodoulou et al. and agrees for their triangulation.)

$$W_{PR} \sim \sum_{\{j_{\ell}\}'} \prod_{\ell} (e^{i\pi})^{2j_{\ell}} (2j_{\ell} + 1) \prod_{t} (e^{-i\pi})^{j_{1} + j_{2} + j_{3}} \prod_{\sigma} \sum_{\mu_{\sigma} = \pm 1} \frac{1}{\sqrt{12\pi V(\sigma)}} \exp i\mu_{\sigma} \left(\sum_{\ell \in \sigma} j_{\ell} \Theta_{\ell}(\sigma) + \frac{\pi}{4} \right)$$

$$= \sum_{\{j_{\ell}\}'} \sum_{\{\mu_{\sigma}\}} \left(\prod_{\sigma} \frac{1}{\sqrt{12\pi V(\sigma)}} \right) \exp i \left(S_{R,\mu} + \frac{\pi}{4} \sum_{\sigma} \mu_{\sigma} \right)$$

where

$$S_{R,\mu} := \sum_{\ell} j_{\ell} \left(\left(2 - |T_{\ell}| + \sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma} \right) \pi - \sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma} \theta_{\ell}(\sigma) \right)$$

Here T_{ℓ} and Σ_{ℓ} respectively denote the set of triangles and tetrahedra containing ℓ , and $\theta_{\ell}(\sigma) = \pi - \Theta_{\ell}(\sigma)$ is the internal dihedral angle in σ at ℓ (angle inside σ between the planes of the two triangles at ℓ) The sign μ_{σ} appearing here is the discrete analogue of sgn(det(e))...

for
$$\mu_{\sigma} \equiv +1$$

$$S_{R,+1} = \sum_{\ell \in \text{int}\Delta} j_{\ell} \left(2\pi - \sum_{\sigma \in \Sigma_{\ell}} \theta_{\ell}(\sigma) \right) + \sum_{\ell \in \partial \Delta} j_{\ell} \left(\pi - \sum_{\sigma \in \Sigma_{\ell}} \theta_{\ell}(\sigma) \right) = S_{\text{Regge}}$$

Exactly the Regge action, including correct boundary terms, for a general triangulation!

Equations of motion for fixed local orientations: Non-flatness!

Varying the internal
$$j_{\ell}$$
:
$$\left[\sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma} \theta_{\ell}(\sigma) = \left(2 + \sum_{\sigma \in \Sigma_{\ell}} (\mu_{\sigma} - 1)\right) \pi\right] \quad \text{giving flatness, } \sum_{\sigma \in \Sigma_{\ell}} \theta_{\ell}(\sigma) = 2\pi, \text{ only for } \mu \equiv 1.$$

Simplest example: 4-1 Pachner move triangulation

For
$$\mu_1 = \mu_2 = \mu_3 = \mu_4 = +1$$
:

$$2\pi = \theta_{\ell_1}(\sigma_2) + \theta_{\ell_1}(\sigma_3) + \theta_{\ell_1}(\sigma_4)$$

$$2\pi = \theta_{\ell_2}(\sigma_1) + \theta_{\ell_2}(\sigma_3) + \theta_{\ell_2}(\sigma_4), \text{ etc.}$$

Flatness around all 4 internal ℓ_a , as expected.

Flatness around ℓ_4 , but **not around** ℓ_1, ℓ_2, ℓ_3 !

Following Christodoulou et al., we call this a **Spike**.

E.g., in plane $\perp \ell_1$:

Not flat!

17

Equations of motion for fixed local orientations: Non-flatness!

2D analogue:

$$\theta_1 + \theta_2 = \theta_3$$

Conical singularity - not flat!

Key point: If interior dihedral angles around a hinge don't sum to 2π , then the geometry in a neighborhood of the hinge is not embeddable into \mathbb{R}^n and so is **not flat!**

Flatness or curved spikes? Possible resolutions:

- 1. Spikes generally correspond to bubbles for which model is ill-defined
 - In connection formulation, Redundant δ 's: Divergence from too much flatness
 - In spin formulation, unbounded sums over internal spins in spikes: Divergence from too much curvature

Because both formulations are ill-defined in this case, there is no strict mathematical contradiction. Does we therefore give up learning from this paradox?

- 2. Is the connection at spikes flat, even if geometry is not?
 - Could $\sum_{\sigma \in \Sigma_{\ell}} \theta_{\ell}(\sigma) = (2 \sum_{\sigma \in \Sigma_{\ell}} (\mu_{\sigma} 1)) \pi$ somehow be the condition for flatness for the **spin-connection** determined by the **triad** e, which knows about orientation?
 - Is the spin-connection even sensitive to the orientation of the triad? Consider $\tilde{e}_a^i = \mu e_a^i$. Then $\omega(\tilde{e})_a^{ij} = 2\tilde{e}^{b[i}\partial_{[a}\tilde{e}_{b]}^{j]} + \tilde{e}_{ak}\tilde{e}^{bi}\tilde{e}^{dj}\partial_{[d}\tilde{e}_{b]}^k = \cdots = 2\mu(\partial_b\mu)e^{b[j}e_a^{i]} + \omega(e)_a^{ij}$

In coordinate patch (x, y, z), if $\mu = \operatorname{sgn}(x)$, then $\mu \partial_b \mu = 2\operatorname{sgn}(x)\delta(x)\partial_b x = 0$ if we regularize $\operatorname{sgn}(x)$ symmetrically. Then $\omega(\mu e) = \omega(e)$, so it seems ω is not sensitive to μ .

Both exact flatness and arbitrarily curved spikes? Contradiction? Resolution?

- 2. Is the connection at spikes flat, even if geometry is not?
 - One can define a different discrete-only connection g_t which is sensitive to μ_{σ} , with $\det g_t = -1$ when $\mu_{\sigma} = -\mu'_{\sigma}$ on either side of t. But then $g_t \in O(3)$, not SU(2), so that is **not the** connection here. What, then, is the connection here?
 - Another possibility: Connection and spin formulations of Ponzano-Regge are 'conjugate' to each other. As we saw, the amplitude imposes exact flatness of connection with zero uncertainty. Does a generalized Heisenberg uncertainty relation then imply that uncertainty in the 'conjugate' curvature defined by spins is infinite? Would be consistent with the spikes.

Analogous tension in continuum! Perhaps start here!

First order formulation

$$S[e,\omega] := \int e \wedge F(\omega) \implies \text{E.O.M.}$$
 • $d_{\omega}e = 0 \implies \omega = \omega(e)$
• $F(\omega) = 0$ Flatness

Second order formulation

$$S[e] := S[e, \omega(e)] = \int e \wedge F(\omega(e)) = \int \mu(x) R[g_{ab}] \sqrt{\det g(x)} d^3x =: S[g]$$
where $\mu(x) := \operatorname{sgn}(\det(e(x)))$ and $g_{ab}(x) := e_a^i(x) e_{bi}(x)$.

 \Rightarrow By exact same derivation as in 4D, E.O.M. $G_{\mu\nu}$ can be distributional where μ changes sign!

Correct E.O.M. (flatness) only where μ is homogeneous! How is that consistent with 1st order formulation?

Resolutions?

- a) Might resolution to paradox in 3D case also give insight to whether sum over orientations in 4D case is a problem?
- b) If it is a problem, should we `force' one homogeneous orientation?
 - i. `Proper' vertex [Engle, Zipfel 2012-2016], `causal'/`Feynman' spin-foam propagator [Livine, Oriti 2003,2004], possibly related to `causal evolution of spin networks' [Markopoulou, Smolin 1997]. Fixing of time orientation?
 - ii. Support from requiring projection onto kernel of Constraint operator in LQC [Ashtekar, Campiglia, Henderson 2010] and full LQG [Thiemann, Zipfel 2014].
 - iii. Modification to yield homogeneity of orientation at least in non-degenerate regions [Rovelli, Wilson-Ewing 2012]

Thank You!

Extra Slides

From spin to connection formulation: Manifest flatness

Diagrammatic notation elements:

$$\rho_j(g): V_j \to V_j$$
 denotes spin j irrep of $SU(2)$. $j \in \mathbb{N}/2, g \in SU(2)$.

$$\dim \left(\operatorname{Inv}\left(V_{j_1} \otimes V_{j_2} \otimes V_{j_3}\right)\right) = \begin{cases} 1 & \text{if } j_1 + j_2 > j_3 \& \text{ cyclic and } j_1 + j_2 + j_3 \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{c}
j \\
\downarrow \\
g \\
\downarrow \\
j
\end{array}
 \quad \text{denotes } \rho_j(g): V_j \mapsto V_j$$

denotes $\rho_j(g): V_j \mapsto V_j$ bilinear form ' ϵ ' on V_j , and its inverse, used to contract, raise and lower indices.

In spinorial realization
$$V_j = \{ \psi^{A_1 \cdots A_{2j}} = \psi^{(A_1 \cdots A_{2j})} \}, \quad \epsilon_{(A_1 \cdot A_{2j})(B_1 \cdots B_{2j})} = \epsilon_{A_1(B_1} \epsilon_{|A_1|B_1} \cdots \epsilon_{|A_{2j}|B_{2j})}$$

The choice in writing signs as exponentials

In foregoing derivation,

- We made a choice to write $(-1)^{2j\ell} = (e^{i\pi})^{2j\ell}$ for each ℓ and $(-1)^{\sum_{\ell \in t} j_\ell} = (e^{-i\pi})^{\sum_{\ell \in t} j_\ell}$ for each t.
- If we had made the reverse choice $(-1)^{2j\ell} = (e^{-i\pi})^{2j\ell}$ and $(-1)^{\sum_{\ell \in t} j_\ell} = (e^{i\pi})^{\sum_{\ell \in t} j_\ell}$, then we would be led to an alternative action $\tilde{S}_{R,\mu}$ such that $\tilde{S}_{R,-} = -S_{\text{Regge}}$.
- The full ambiguity is **much broader**: A choice of k_{ℓ} , $k_t \in 2\mathbb{N} + 1$ at each ℓ and t, setting $(-1)^{2j_{\ell}} = (e^{ik_{\ell}\pi})^{2j_{\ell}}$ and $(-1)^{\sum_{\ell \in t} j_{\ell}} = (e^{ik_{t}\pi})^{\sum_{\ell \in t} j_{\ell}}$.
- Note this choice is just a choice of **how to write** the Ponzano-Regge amplitude. Thus, it **cannot affect the asymptotics** of Ponzano-Regge. Ponzano-Regge is a well-defined model and so has only one asymptotics!

However,

- we next consider critical point equations from varying the j_{ℓ} 's, which makes sense only if we extend the action to continuous values of the j_{ℓ} 's, beyond $\mathbb{N}/2$.
- This extension does depend on the choice of how the signs are written as exponentials.
- Hence, the resulting actions and critical point equations will depend on this choice.
- Seems to **contradict** the fact that Ponzano-Regge, and hence its asymptotics, cannot depend on this choice. Nevertheless, as in the literature, we assume that the resulting asymptotics tell us **something heuristic** about Ponzano-Regge.

Equations of motion for fixed local orientations: Non-flatness!

Simplest triangulation with spike: 4-1 Pachner move (${}^4\tau$ triangulation):

$\mathbf{vertices}$:	4 boundary $a = 1, 2, 3, 4$
-----------------------	-----------------------------

1 internal P

tetrahedra: 4, σ_a , labeled by the vertex a not contained.

edges: 6 boundary
$$\ell_{ab}$$

4 internal $\ell_a := \ell_{aP}$

triangles: 4 boundary
$$t_a \in \sigma_a$$

6 internal $t_{ab} = \sigma_a \cap \sigma_b$

$$\bullet |T_{\ell_a}| = |T_{\ell_{ab}}| = 3$$

•
$$\Sigma_{\ell_a} = {\{\sigma_b\}_{b \neq a}} \quad \Rightarrow \quad |\Sigma_{\ell_a}| = 3$$

Critical point equations

from varying each internal spin j_{ℓ} :

$$\sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma} \theta_{\ell}(\sigma) = \left(2 - |T_{\ell}| + \sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma}\right) \pi = \left(\sum_{\sigma \in \Sigma_{\ell}} \mu_{\sigma} - 1\right) \pi$$