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My motivation in giving this talk:

1. To introduce spin foams - the path integral formulation of loop
quantum gravity — to this audience enough for them to appreciate
Jerzy’s contributions.

2. To go over the issue of the sum over local orientations in spin
foams and associated questions about correct equations of
motion in the classical limit.

3. To look for guidance in the original 3D spin-foam model of
quantum gravity, Ponzano-Regge:

a. A similar sum over local orientations is present, also seeming to lead to
incorrect equations of motion.

b. But we know it has the correct equations of motion — flatness. Or do we?

c. Understand this paradox first in order to understand the issue in the 4D
case.
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OUTLINE

Spin foams: Motivation

Il. Derivation of amplitude from idea of Plebanski: Gravity
as constrained topological field theory.

I1l. Resulting models: EPRL and generalizations

IV. Contributions of Jerzy and collaborators: To bring the
covariant and canonical formulations of loop quantum
gravity closer.

V. Classical limit of EPRL: Sum over local orientations and
concern with equations of motion.

VI. Exactly analogous phenomenon in Ponzano-Regge, where
equations of motion seem correct. A clear paradox to
learn from to guide next steps.



l. Spin foams: Motivation

a.Path integral formulation of loop quantum gravity

b.Desire for manifestly space-time covariant formulation of dynamics (as for all path
integral approaches)

c.Provides projector onto physical states: Avoid explicitly solving for the full solution to
the Hamiltonian constraint operator.

Spin foam:

* Basis of canonical loop quantum
. . Spin network:
gravity: Spin networks

* History of elements of this basis:
Spin foam m .




Il. Derivation of amplitude from idea of Plebanski: Gravity as

constrained topological field theory.

Classical BF theory

Spr(BL wl] = / tr(B A F(w))

0SpF 1= /tr (0BA F(w) + B ANdy,dw) = ftr(&B/\F(w) — (dyB) A dw)

== F=0 and d,B =~ 0 == no local degrees of freedom

Simplicity with Immirzi parameter = Holst gravity

1 1
Bl = Py ((*e A e)” + —el A e‘]> for some e
T g

I
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= SBF[B,(A}] = m
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Il. Derivation of amplitude from idea of Plebanski: Gravity as
constrained topological field theory.

Original Plebanski formulation: e ~ =i (self-dual action), using spinorial variables

e imposed via Lagrange multiplier

Quantum BF theory: Ooguri model
Discretize on a 2-complex with 4-cells v*, 3-cells e* and 2-cells f*, and g. € SL(2,C):

“/DBDw exp (1S[B, w| /DBDw exp( /B/\F ) /Dw&(F

(Moo (M) = 5 (T [ (17 (HAEF)

{ps.kr.dre} \e€€f

where the sum/integral is over an irrep (ps, ks) of SL(2,C) for each f, and
for each f > e a coherent state [jre,nre) € Hps ks T2 jresnse) = Jre(Gre+ 1)y npe-J|ife,npe) = Jrelifesnfe)-

A}?F depends on (ps, k) and APT on data associated to f,e > v. 6



Il. Derivation of amplitude from idea of Plebanski: Gravity as
constrained topological field theory.

e The data pf, k¢, jef, ney determine bivectors BIf via ef = ejkBg;f, ef Bef with

Jop =Ky =p}— ki Jep Bep=prky  Jer = ipfies

1 1
e Related to bivectors Y.y via Bey = e (*Zef i —Eef>
@ v

e “Linear simplicity”:

— For each 3-cell e*, AN/ such that ¥ (N.), =0 Vf3>e.
— Ensures all ¥.; are simple and hence determine a 2-plane f*(e) in Minkowski space.

— Ensures that, for each 3-cell e*, all f*(e) are in same 3-plane (L N,).

— When critical point equations hold in large spin limit, is equivalent to Ze ¥ = / el Ae’ for
f*(e)

1 1
some constant e! for each 3-cell e* , and hence B,y e Ne+ —eANe
87TG f*(e) Y

¢ Remains to quantize linear simplicity



l1l. Resulting models: EPRL and generalizations

Restriction to simplicial complex with space-like triangles: EPRL
ot/ = kf = jte for all eef
e Proposed along with Euclidean version by E., Pereira, Rovelli, and Living in 2007.

e Euclidean version for v < 1 coincides with model by Friedel and Krasnov proposed earlier in 2007.

General 2-complex with space-like triangles: KKL(-DHR)

e Even though the EPRL derivation of the above condition depended on cell-complex being simplicial,
the condition itself does not! It immediately generalizes to a general cell complex.

e The exact same thing happens in the Euclidean signature.

e Was first noticed and proposed by Kaminski, Kisielwoski, and Lewandowski in the Euclidean
signature in 2009, and by Ding, Han, and Rovelli in the Lorentzian signature in 2010.



l1l. Resulting models: EPRL and generalizations

Quantum simplicity with time-like triangles: Conrady and Hnybida 2010

Inclusion of cosmological constant: Haggard, Han, Kaminski, Riello 2014-2021

Restriction to a single orientation and removal of degenerate sector:
‘proper vertex’ E. and Zipfel 2011-2015. Related to later part of talk.



IV. Contributions of Jerzy and collaborators: To bring the
covariant and canonical formulations of loop quantum gravity
closer.

 Spin foams and the Warsaw group

o Jerzy started doing research in spin foams after the EPRL and FK models.

o He invited me to Warsaw in 2007 to give a week of day-long lectures on spin-
foams to the quantum gravity group. | believe he invited other spin foam
researchers to give similar series of lectures.

o The Warsaw group —Jurek and others - made many important contributions to
spin foams, and is still one of the few leading groups in spin-foams.



IV. Contributions of Jerzy and collaborators: To bring the
covariant and canonical formulations of loop quantum gravity
closer.

* Kaminski, Kisielowski, and Lewandowski (KKL) generalization:

o EPRL uses simplicial complexes, so that spin-networks in the histories are always 4-valent. In
canonical LQG, such a restriction is not natural — all valences are allowed.

o KKL provides a very natural generalization of EPRL to include all cell complexes.

o has been central to spin foam cosmology (Vidotto 2010-2011).

o Kisielowski, Lewandowski, and Puchta (2011) also developed a diagrammatic approach to spin-
foams that aides with systematically categorizing all spin-foams for given boundary graph,
allowing the same authors in (2012) to systematically categorize all foams for Vidotto’s dipole
cosmology boundary states.

* Kisielowski and Lewandowsk (2018): Derived a spin foam model coupled to a scalar field starting
from the canonical theory developed by Domagala, Giesel, Kaminksi, and Lewandowski (2010 -
“Gravity quantized” - which Kristina Giesel will talk about in the next talk.)
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V. Classical limit of EPRL: Sum over local orientations an
concern with equations of motion.

e Large spin limit of EPRL vertex amplitude for non-degenerate data:

. G ;5 »
Ay ({)\Jf: /\nfe}) ol 5 (6 SResze | ¢ SRegge)

Here {nse}sce are the outward normals to the four triangles f* for each tetrahedron e*, and vj; are
their arcas. That defines each tetrahedron in R3, which are then rotated in Minkowksi space to form
each 4-simplex.

e Implies sum over local orientation: One orientation variable u, € {—1,1} for each 4-simplex o.

e In continuum limit:

S[g]:/ (z)R(x)+\/detg(z)d*x
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V. Classical limit of EPRL: Sum over local orientations an
concern with equations of motion.

e Equation of motion:
dS[g] = fy\/ﬁ (RW - %ng) SgMdx + //u?a (Vf,,ég“” + W;fa@(w) d*x
= / pn/GGu 69" dia — / (Oatt) V69" d*z + / (aﬁ (ngaau)) 5 dt e
= f 15 (Gudg™ — 9720V 0aps + g~ 2pudp (Wil Baps) ) 09" d'o

= BE.O.M. GG, can be distributional where p changes sign!

13

Correct E.O.M. (G,, =0) only where x is homogeneous!
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VI. Exactly analogous phenomenon in Ponzano-Regge,
where equations of motion seem correct. But are they?

From spin to connection formulation:

Given a 3D triangulation A with edges ¢, triangles ¢, and tetrahedra o,

Wpr = 1)22(2, + 1) [[ (-1 4= T I 72 %2 S B R
PR {JZ}’ ];[ ]E ) ];[( ) H is ds  d so signs are well-defined!
¢ a
where {js}’' = {je }reinta C N/2. Assume, for 81mphclty, no boundary. Then

= f (H dgt) 11D 25+ 1)Tr;(he)
t VA

— / (Hdgt) 1;[5(@) e wa(S(F(w)) = /DwDee*xp (i/e/\F(w)) = /DwDeexp (iSe,w])”
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Large spin asymptotics: Locally oriented Regge!

Setting j, = Aj; (€ N/2) for j7 fixed.

. . . [Ponzano and Regge (1968);
{ jl ]2 JB } - E ,]a@ + Dowdall, Gomes, and Hellmann (2009);
A— 00
']4 j5 ']6 SWV Christodoulou, Langvik, Riello, Réken, and Rovelli (2012)]

where V is the volume of the tetrahedron with edge lengths Aj, and
O, is the ezternal dihedral angle at edge a (angle between the normals to the two triangles at a).

. = This choice to express the —1’s as exponentials is a generalization
implies ( o g .

of that in Chistodoulou et al. and agrees for their triangulation.)

W Z H (€)% (24, + 1) H(e AREEREE H Z \/Wexpwa (235915(0) + %)

{je} ¢ O o=

) {% {% (H \/W> o (SR’M Z;”a)




where

Shu = ng ((2 — |Ty| + Z ug) T — Z uaﬁg(a))
¢

oEYy oEY,

Here Ty and X, respectively denote the set of triangles and tetrahedra containing ¢, and
0y(c) = ™ — Oy(0o) is the internal dihedral angle in o at ¢ (angle inside o between the planes of the
two triangles at ) The sign u, appearing here is the discrete analogue of sgn(det(e))..

for Hoe = +1 SR’+1 = Z j;g (27’(’ — z g,g(O')) + Z jg (ﬂ‘— Z 95(0)) - SRegge

feint A o€y JASToJAN g€y

Exactly the Regge action, including correct boundary terms, for a general triangulation!

Equations of motion for fixed local orientations:

Varying the internal j,: Z tobe(a) = (2 + Z (pho — 1)) T glvllngfﬂatne:ssl, Does, elo) = 2m,
oEL, oEXy only tor pt = L.
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Simplest example: 4-1 Pachner move triangulation

For py = po = pg = pg = +1:
21 = 931 (0-2) iy 951 (0-3) + 931 (04)
21 = 0y, (01) + 04, (03) + 04, (04), ete.

For py = po = ps = +1, pg = —1:

0=0y,(02) + ¢, (03) — 04, (04)
0=04,(01) + 6p,(03) — 0¢,(04)
0 =0p,(01) + ¢, (02) — 04, (04)
2 =0y, (01) + 0p,(02) + 04, (03)

Flatness around all 4 internal 7,
as expected.

Flatness around /4,
but not around /4, /5, ¢3!

Following Christodoulou et al.,

we call

this a Spike.

E.g., in plane L ¢;:

b

9*”»1 (02)

ta3

t34 4

6 1 (03)
E Not flat!

'9‘71(0_4) 3
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Equations of motion for fixed local orientations:

2D analogue:
01+ 65 =05 0171 62 —p Conical singularity - not flat!
t3

Key point: If interior dihedral angles around a hinge don’t sum to 2w,
then the geometry in a neighborhood of the hinge is not embeddable into R™ and so is not flat!
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Flatness or curved spikes? Possible resolutions:

1. Spikes generally correspond to bubbles for which model is ill-defined

e In connection formulation, Redundant §’s: Divergence from too much flatness
e In spin formulation, unbounded sums over internal spins in spikes: Divergence from too

much curvature

Because both formulations are ill-defined in this case, there is no strict mathematical
contradiction. Does we therefore give up learning from this paradox?

2. Is the connection at spikes flat, even if geometry is not?

e Could ) 5 0u(c) = (2 - > oes, (Mo — 1)) m somehow be the condition for flatness for the spin-
connection determined by the triad e, which knows about orientation?

e Is the spin-connection even sensitive to the orientation of the triad? Consider &’ = pe’.
Then w(€)Y = er[@a[aeb] + €41 € edja[deb] = ... = 2u(Opp)eV el + w(e)¥

In coordinate patch (x,y, z), if u = sgn(z), then pudpyu = 2sgn(z)d(x)dpx = 0 if we regularize
sgn(z) symmetrically. Then w(pe) = w(e), so it seems w is not sensitive to pu. .



Both exact flatness and arbitrarily curved spikes?
Contradiction? Resolution?

2. Is the connection at spikes flat, even if geometry is not?

e One can define a different discrete-only connection g; which is sensitive to pu,, with detg; =
—1 when p, = —p. on either side of t. But then ¢g; € O(3), not SU(2), so that is not the
connection here. What, then, is the connection here?

e Another possibility: Connection and spin formulations of Ponzano-Regge are ‘conjugate’ to
each other. As we saw, the amplitude imposes exact flatness of connection with zero un-
certainty. Does a generalized Heisenberg uncertainty relation then imply that uncer-
tainty in the ‘conjugate’ curvature defined by spins is infinite? Would be consistent
with the spikes.
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Analogous tension in continuum! Perhaps start here!

First order formulation ¢ o] := /e AF(w) = EOM. ©®dwe=0 = w=uwle)
e (w)=0 Flatness

Second order formulation

Sle] = Sle, w(e)] = / e A F(w(e)) = f (@) Rlgus]/dotg@)de = Slg]

where p(z) := sgn(det(e(x))) and gqp(z) = €’ (z)epi ().

= By exact same derivation as in 4D, E.O.M. G, can be distributional where p changes sign!

Correct E.O.M. (flatness) only where p is homogeneous!
How is that consistent with 1st order formulation?
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Resolutions?

a) Might resolution to paradox in 3D case also give insight to whether sum over orientati
in 4D case is a problem?

b) If itis a problem, should we force’ one homogeneous orientation?

I.  Proper’ vertex [Engle, Zipfel 2012-2016], causal’/ Feynman’ spin-foam propagator
[Livine, Oriti 2003,2004], possibly related to causal evolution of spin networks’
[Markopoulou, Smolin 1997]. Fixing of time orientation?

ii. Support from requiring projection onto kernel of Constraint operator in LQC [Ashtekar,
Campiglia, Henderson 2010] and full LQG [Thiemann, Zipfel 2014].

iii. Modification to yield homogeneity of orientation at least in non-degenerate regions
[Rovelli, Wilson-Ewing 2012]

Thank You!
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Extra Slides



From spin to connection formulation:

Diagrammatic notation elements:
pi(g) : V; = V; denotes spin j irrep of SU(2). jeN/2, ge SU(2).

: 1 if j1 + jo > j3 & cyclic and j1 + jo + 73 € N
dim (IHV (V?l ® Vi, ® ‘/st)) - { 0 otherwise
J1J2 s . . .
\/ V4 denotes specific element of Inv (V;, ® V;, ® V,,) with phase convention chosen
J
bilinear form ‘€’ on V}, and its in-

J
@ denotes p;(g) : V; — V; ﬂ U verse, used to contract, raise and
J

lower indices.
J

o 2od y Ay A 1 (AqAgs _
In spinorial realization V; = {opAr A2 = ¢( x 23)}, €(A1-Ag;)(B1-+Ba;j) = €A1(B1€|A1|B1 * * €|Az;|Ba;j)
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The choice in writing signs as exponentials

In foregoing derivation,
e We made a choice to write (—1)27¢ = (e'™)2J¢ for each £ and
(_1)22615 - (e_”)zliet J¢ for each t.

e If we had made the reverse choice (—1)27¢ = (e~i)%/¢ and (—1)2¢tet It = (¢i™)2retde,
then we would be led to an alternative action Sg , such that Sp _ = —SgRegge-

e The full ambiguity is much broader: A choice of ky, kt € 2N+ 1 at each £ and t, setting (—1)%7¢ = (eikfﬁ)%f
and (_1)ZE€tj€ — (e?:ktﬂ')ZQEtje'

e Note this choice is just a choice of how to write the Ponzano-Regge amplitude. Thus, it cannot affect the
asymptotics of Ponzano-Regge. Ponzano-Regge is a well-defined model and so has only one asymptotics!
However,

e we next consider critical point equations from varying the j,’s, which makes sense only if we extend the
action to continuous values of the j;’s, beyond N/2.

e This extension does depend on the choice of how the signs are written as exponentials.
e Hence, the resulting actions and critical point equations will depend on this choice.

e Seems to contradict the fact that Ponzano-Regge, and hence its asymptotics, cannot depend on this choice.

Nevertheless, as in the literature, we assume that the resulting asymptotics tell us something heuristic about
Ponzano-Regge.
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Equations of motion for fixed local orientations:

1
Simplest triangulation with spike: 4-1 Pachner move (47 triangulation):

vertices: 4 boundary a = 1,2, 3,4 \ )

1 internal P

N\
tetrahedra: 4, o,, labeled by the vertex a not contained. 4 4\'
3

edges: 6 boundary £,
4 internal ¢, := ¢, p
| T o [Ti,| = Ti,,| = 3
triangles: 4 boundary t, € o,
6 internal t,, = o, Moy, ® Xy, = {Ub}b#a = [Xe,|=3

Critical point equations Z 1o00(c) = (2 — |Ty| + Z Ma) o (Z B = 1) T

from varying each internal spin j: s o, Japer=S)
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