#### Symmetries of extremal horizons

#### Alex Colling

DAMTP, University of Cambridge

#### **IMPAN 2025**

- A. Colling, D. Katona, J. Lucietti. Rigidity of the extremal Kerr-Newman horizon. Lett. Math. Phys. 115, 19 (2025).
- A. Colling. Symmetries of extremal horizons (work in progress).
- Work in progress with Jun Liu.

#### Motivation

Consider a D-dimensional analytic, stationary, asymptotically flat solution to the vacuum Einstein equations with a connected event horizon.

- No-hair theorem [Israel, Hawking, Carter, Robinson, ...]: for D=4 the solution is a member of the Kerr family with parameters (M,J).
- Rigidity theorem [Hawking '72]: (i) the event horizon is a Killing horizon, and (ii) if the solution is rotating, it is also axisymmetric.
- Is there a quasi-local version of these results? 

   study of isolated horizons [Ashtekar, Lewandowski, . . . ].
- Extremal and non-extremal cases very different: in the extremal case the Einstein equations impose constraints involving only intrinsic data.

#### Extremal Killing horizons

Let  $(\mathcal{M}, \mathbf{g}, \mathcal{T})$  be a spacetime of dim. n+2 containing an extremal Killing horizon  $\mathcal{H}$  with generator  $\xi$  and compact cross section M.

$$\mathcal{L}_{\xi}\mathbf{g} = 0, \qquad \xi \perp \mathcal{H}, \qquad \mathsf{d}(\mathbf{g}(\xi, \xi)) \stackrel{\mathcal{H}}{=} 0.$$



We assume  $(\mathcal{M}, \mathbf{g}, \mathcal{T})$  satisfies the Einstein equations (EE)

$$\operatorname{Ric}(\mathbf{g}) - \frac{1}{2} R_{\mathbf{g}} \, \mathbf{g} = \mathcal{T}.$$

# Near-horizon equations

#### Definition

The near-horizon data (g, X, T, U) induced on M by  $(\mathcal{M}, \mathbf{g}, \mathcal{T})$  consists of

- ullet The induced Riemannian metric  ${\it g}$  on  ${\it M}$ .
- A 1-form  $X \in \Omega^1(M)$  defined by

$$\mathsf{d}\xi \;\stackrel{\mathcal{H}}{=}\; \xi \wedge X.$$

- A symmetric (0,2) tensor T, the pullback of T to M.
- A function *U* on *M* defined by

$$\iota_{\xi}\mathcal{T} \stackrel{\mathcal{H}}{=} U\xi.$$

EE for  $(\mathcal{M},\mathbf{g},\mathcal{T})$  imply near-horizon equations (NHE) for (M,g,X,T,U)

$$R_{ab} = \frac{1}{2} X_a X_b - \nabla_{(a} X_{b)} + T_{ab} - \frac{1}{n} (g^{cd} T_{cd} + 2U) g_{ab}.$$

### Near-horizon geometry [Kunduri-Lucietti '13]

Given NH data, define the near-horizon geometry  $(\mathbb{R}^2 \times M, \mathbf{g}_{NH}, \mathcal{T}_{NH})$ 

$$\begin{split} \mathbf{g}_{\mathrm{NH}} &= 2 \mathrm{d} v \mathrm{d} r + 2 r \mathrm{d} v \odot X + r^2 F \mathrm{d} v^2 + g, \\ \mathcal{T}_{\mathrm{NH}} &= 2 U \mathrm{d} v \mathrm{d} r + 2 r \mathrm{d} v \odot (\beta + UX) + r^2 (\alpha + UF) \mathrm{d} v^2 + T. \end{split}$$

$$F = \frac{1}{2}|X|^{2} - \frac{1}{2}\nabla_{a}X^{a} + (1 - \frac{2}{n})U - \frac{1}{n}g^{ab}T_{ab},$$
  

$$\beta_{a} = -(\nabla^{b} - X^{b})T_{ab} - UX_{a},$$
  

$$\alpha = -\frac{1}{2}\nabla_{a}\beta^{a} + X^{a}\beta_{a}.$$



- EE for  $(\mathbf{g}_{NH}, \mathcal{T}_{NH}) \iff NHE$  for (g, X, T, U).
- SIn is static if dX = 0 and dF = XF. It is rotating if X is not exact.

#### Outline

• Rigidity theorem for extremal horizons

 $oldsymbol{\circ}$  Examples: p-forms, scalars and non-abelian gauge fields

- Symmetry enhancement of the near-horizon geometry
- Classification of extremal horizons in Einstein-Maxwell theory

### Rigidity theorem

In addition to compactness of  ${\cal M}$ , we impose energy conditions

For all null vectors 
$$\ell$$
,  $\mathcal{T}(\ell,\ell) \geq 0$ . (EC1)

For all null vectors 
$$\ell$$
,  $\mathcal{T}(\ell,\cdot)$  is causal. (EC2)

Extending results in [Dunajski-Lucietti '23, Colling-Katona-Lucietti '24]:

#### **Theorem**

Let (M,g,X,T,U) be a rotating solution to the near-horizon equations on a compact manifold  $M. \label{eq:manifold}$ 

- If the associated near-horizon geometry satisfies the null energy condition (EC1), then (M,g) admits a Killing vector field K.
- If in addition the condition (EC2) holds, then K preserves the remaining near-horizon data (X,T,U).

**Remark.** If  $(\mathbf{g},\mathcal{T})$  satisfies (EC1) or (EC2), then so does  $(\mathbf{g}_{NH},\mathcal{T}_{NH})$ .

### Tensor identity

 K is constructed using an Ansatz. Given a smooth positive function  $\Gamma$ , define

$$K^{\flat} = \Gamma X + \nabla \Gamma.$$

• [Dunajski-Lucietti '23]: on compact M there exists a (unique up to scaling) choice of  $\Gamma$  s.t.  $\nabla_a K^a = 0$ .

#### **Proposition**

If (g, X, T, U) solves the NHE, there exist  $\sigma \in (M)$  and  $\tau \in C^{\infty}(M)$  s.t.

$$\frac{1}{4}|\mathcal{L}_K g|^2 + \gamma = \tau \nabla_a K^a + \nabla_a \sigma^a,$$

where

$$\gamma = T_{ab}K^aK^b - 2\Gamma K^a\beta_a - |K|^2U + \Gamma^2\alpha.$$

• We have  $r^2\gamma = \mathcal{T}_{NH}(\ell,\ell)$ , null vector  $\ell = \Gamma e_+ - \frac{1}{2\Gamma} r^2 |K|^2 e_- - rK^i e_i$ .

### Inheritance of symmetry

- Integrating tensor identity over M using (EC1) shows  $\mathcal{L}_K g = \gamma = 0$ .
- From  $\mathcal{T}_{\mathsf{NH}}(\ell,\ell)=0$  and (EC2) we deduce  $\mathcal{T}_{\mathsf{NH}}(\ell,\cdot)\propto\ell$ , giving

$$\Gamma \alpha = K^a \beta_a, \qquad \Gamma \beta_a + U K_a = K^b T_{ab}.$$

• It follows that  $\mathcal{L}_K U = \mathcal{L}_K T = 0$ . Proving  $\mathcal{L}_K \Gamma = 0$  requires global argument using elliptic operator [Colling-Dunajski-Kunduri-Lucietti '24]

$$L\psi = -\Delta\psi + \nabla_a((\Gamma^{-1}\nabla^a\Gamma)\psi) + \Gamma^{-2}|K|^2\psi.$$

ullet Corollary [Kamiński-Lewandowski '24]: the following function A is constant

$$A = -\frac{|K|^2}{2\Gamma} + \frac{1}{2}\Delta\Gamma + (1 - \frac{2}{n})\Gamma U - \frac{1}{n}\Gamma g^{ab}T_{ab}.$$

# Example: p-forms and uncharged scalars

Consider an (n+2)-dimensional theory with a p-form  $\mathcal F$  and scalar  $\Phi$ .

$$S = \int \left(R - \frac{1}{2} |\mathrm{d}\Phi|_{\mathbf{g}}^2 - V(\Phi) - \frac{2}{p!} h(\Phi) |\mathcal{F}|_{\mathbf{g}}^2\right) \ \mathrm{vol}_{\mathbf{g}} + S_{\mathrm{top}}.$$

• On a cross section  $i:M\to \mathcal{M}$  the matter induces a scalar  $\pmb{\phi}$ , a closed p-form  $\pmb{B}$  and a (p-2)-form  $\pmb{C}$  by

$$\phi = i^* \Phi, \qquad B = i^* \mathcal{F}, \qquad \iota_{\xi} \mathcal{F} \stackrel{\mathcal{H}}{=} \xi \wedge C.$$

• We find  $\gamma = \frac{1}{2}|\mathcal{L}_K\phi|^2 + \frac{2}{(p-1)!}h(\phi)|\iota_K B - \mathsf{d}(\Gamma C)|^2$ , so if h>0

$$\mathcal{L}_K \phi = 0, \qquad \iota_K B = \mathsf{d}(\Gamma C).$$

Combine with matter equations to deduce  $\mathcal{L}_K B = \mathcal{L}_K C = 0$ .

ullet Can define near-horizon matter fields preserved by K

$$\Phi_{\mathsf{NH}} = \phi, \qquad \mathcal{F}_{\mathsf{NH}} = \mathsf{d}(-r\mathsf{d}v \wedge C) + B.$$

### Non-abelian gauge fields and charged fields

Consider a gauge field  $\mathcal A$  with gauge group G (compact & semisimple), curvature  $\mathcal F=\mathrm{d}\mathcal A+\frac12[\mathcal A,\mathcal A]$  and charged field  $\Phi.$ 

$$S = \int \left( R - \langle \mathcal{D}\Phi, \mathcal{D}\Phi \rangle - V(\Phi) - h(\Phi) \mathsf{Tr}(\mathcal{F}_{\mu\nu}\mathcal{F}^{\mu\nu}) \right) \ \mathsf{vol}_{\mathbf{g}} + S_{\mathsf{top}}.$$

Here  $\mathcal{D}\Phi = d\Phi + \mathcal{A} \cdot \Phi$  is the covariant derivative.

• Induced matter data  $(\phi, A, C)$  with curvature B and cov. deriv. D

$$\phi = i^* \Phi, \qquad A = i^* \mathcal{A}, \qquad \iota_{\xi} \mathcal{F} \stackrel{\mathcal{H}}{=} \xi \wedge C.$$

•  $\gamma$  contains extrinsic data  $\psi = \partial_r \mathcal{D}_\xi \Phi$  and  $\underline{H}_a = \mathcal{F}_{ra}$  on  $\mathcal{H}$  (in GNC).

$$\gamma = \langle D_K \phi - \Gamma \psi, D_K \phi - \Gamma \psi \rangle + 2h(\phi) \operatorname{Tr} |\iota_K B - D(\Gamma C) + \Gamma \mathcal{D}_{\xi} H|^2.$$

• Use matter equations to deduce [Li-Lucietti '13]

$$D_K \phi = -\Gamma C \cdot \phi, \quad \iota_K B = D(\Gamma C) \implies K \text{ preserves } (\phi, A, C)$$

# Symmetry enhancement

Building on [Kunduri-Lucietti-Reall '07, Dunajski-Lucietti '23]:

#### **Theorem**

Any (extended) near-horizon geometry satisfying (EC1) and (EC2) with compact cross sections has isometry group containing the orientation-preserving isometry group of  $AdS_2$ ,  $\mathbb{R}^{1,1}$  or  $dS_2$ .

• Introducing coordinates  $x^i$  on M and  $\rho$  by  $r = \Gamma(x)\rho$ ,

$$\mathbf{g}_{\mathrm{NH}} = \Gamma[A\rho^2\mathrm{d}v^2 + 2\mathrm{d}v\mathrm{d}\rho] + g_{ab}(\mathrm{d}x^a + K^a\rho\mathrm{d}v)(\mathrm{d}x^b + K^b\rho\mathrm{d}v).$$

- The 2D metric in [] is  $AdS_2$  if A<0,  $\mathbb{R}^{1,1}$  if A=0 and  $dS_2$  if A>0. Isometries of [] extend to NHG (with 3D orbits if  $K\not\equiv 0$ ) when combined with appropriate shift in a coordinate  $\chi$  along K.
- ullet Isometries preserve EM tensor  $\mathcal{T}_{NH}$  and near-horizon matter fields.

### Special cases

• Example: extremal Kerr.  $M=S^2$ ,  $A=-\frac{1}{2a^2}$ .

$$\begin{split} \mathbf{g}_{\mathrm{NH}} &= \frac{1+x^2}{2} \left( -\frac{1}{2a^2} \rho^2 \mathrm{d} v^2 + 2 \mathrm{d} v \mathrm{d} \rho \right) \\ &\quad + \frac{4a^2 (1-x^2)}{1+x^2} \left( \mathrm{d} \phi + \frac{1}{2a^2} \rho \mathrm{d} v \right)^2 + \frac{a^2 (1+x^2)}{1-x^2} \mathrm{d} x^2. \end{split}$$

If the sln is both static and rotating, there is a local isometric splitting

$$M = S^1 \times N, \quad g = -A\Gamma d\chi^2 + g_N, \quad K = \partial_{\chi}$$

In this case the NHG is locally a warped product of  $AdS_3$  and N.

• A<0 for rotating solutions satisfying the strong energy condition. Doubly extremal horizons have A=0, e.g. "ultracold" Reissner-Nordström-dS.



### Four-dimensional Einstein-Maxwell theory

Einstein-Maxwell theory: induced data  $(g, K, \Gamma, B, C)$  satisfying NHE and

$$dB = 0,$$
  $\iota_K B = d(\Gamma C),$   $\nabla^a(\Gamma B_{ab}) = K_b C.$ 

- 4 dimensions: complete classification (even with  $\Lambda!$ ) using rigidity theorem as in the vacuum case [Dunajski-Lucietti '23]
  - Static case: g has constant curvature;  $\Gamma, \star B, C$  are constant. [Chruściel-Tod '07, Kunduri-Lucietti '09, Kamiński-Lewandowski '24]
  - Axi-symmetric case: the Kerr-Newman horizon is the unique rotating solution admitting a U(1) action preserving (g,X,B,C). [Lewandowski-Pawlowski '03, Kunduri-Lucietti '09]

#### Theorem [Colling-Katona-Lucietti '24]

Every rotating solution to the 4D Einstein-Maxwell NHE is given by an extremal Kerr-Newman horizon cross section.

#### Five dimensions

- 5D Einstein-Maxwell theory: classification incomplete even assuming  $U(1) \times U(1)$  symmetry. Many known solutions; restrict to  $M = S^3$ . [Kunduri-Lucietti '09 '13, Hollands-Ishibashi '10, Blázquez-Salcedo Kunz Navarro-Lérida '13]
  - Vacuum: 3-parameter family of solutions, includes horizons of Myers-Perry and Kaluza-Klein black holes.
  - Static: 2-parameter family of solutions, with  $U(1) \times U(1)$  symmetry and vanishing magnetic field B=0.
  - ullet Homogeneous: two 2-parameter families, SU(2) imes U(1) symm.
- Can add Chern-Simons term  $\propto \lambda \, \mathcal{F} \wedge \mathcal{F} \wedge \mathcal{A}$ . "Charged Myers-Perry" found only for specific value of  $\lambda$  [Chong-Cvetic-Lu-Pope '05].
- [AC, Jun Liu]: explicit 3-parameter family  $(J_1, J_2, Q)$  interpolating between static solution and KK black hole for any  $\lambda$ .

#### New solutions

 $M=S^3$ , coordinates  $y\in[0,1], \phi_{1,2}\in[0,2\pi)$  and parameters  $(c_1,c_2,\kappa)$ .

$$\begin{split} & \mathbf{g} = \frac{\Gamma}{4y(1-y)} \mathrm{d}y^2 + \frac{c_1^3 \left[ c_1 p_0(\kappa,\lambda) y + c_2 p_2(\kappa,\lambda) (1-y) \right]}{p_1(\kappa,\lambda) \, \Gamma} (1-y) \mathrm{d}\phi_1^2 \\ & + \frac{2c_1^2 c_2^2 p_1(\kappa,\lambda)}{p_0(\kappa,\lambda) \Gamma} y (1-y) \mathrm{d}\phi_1 \mathrm{d}\phi_2 + \frac{c_2^3 \left[ c_2 p_0(\kappa,\lambda) (1-y) + c_1 y p_2(\kappa,\lambda) \right]}{p_1(\kappa,\lambda) \, \Gamma} y \mathrm{d}\phi_2^2, \end{split}$$

$$K = -\frac{2\kappa}{(\kappa+2\lambda)} \sqrt{\frac{p_3(\kappa,\lambda)}{(\kappa^2-1)}} \left( \frac{c_2}{c_1} \frac{\partial}{\partial \phi_1} + \frac{c_1}{c_2} \frac{\partial}{\partial \phi_2} \right),$$

$$\Gamma = [c_1 y + c_2 (1 - y)]^2, \qquad C = \frac{\sqrt{3c_1c_2}}{\Gamma} \sqrt{\frac{2(\kappa^2 - 1)}{p_0(\kappa, \lambda)}},$$

$$B = -\frac{\sqrt{3c_1c_2}}{\Gamma} \sqrt{\frac{p_3(\kappa,\lambda)}{2p_0(\kappa,\lambda)}} \, \mathrm{d}y \wedge \left(c_1^2 \mathrm{d}\phi_1 - c_2^2 \mathrm{d}\phi_2\right).$$

### Entropy relations

- Angular momenta  $J_i = J[m_i]$ , charge Q and entropy  $S = \frac{1}{4} Vol_q(M)$ are accessible from horizon data.
- Integrating the constant  $A=-\frac{|K|^2}{2\Gamma}+\frac{1}{2}\Delta\Gamma-\frac{4}{3}\Gamma C^2-\frac{1}{3}\Gamma |B|^2$  leads to the entropy law [Hajian Seraj Sheikh-Jabarri '14]

$$\frac{A}{2\pi}S = \sum_{i} \omega^{i} J_{i} + \frac{4}{3}\mu Q,$$

where  $K = \sum_{i} \omega^{i} m_{i}$  and  $\mu = \Gamma C + \iota_{K} b$ , B = db.

• In addition, for  $\lambda = 0$  the two branches satisfy

$$S^{(1)} = \frac{4\sqrt{\pi}|Q^{(1)}|^{3/2}}{3^{3/4}} + \frac{3^{3/4}\pi^{3/2}}{4} \frac{|J_1^{(1)}J_2^{(1)}|}{|Q^{(1)}|^{3/2}}, \quad S^{(2)} = 2\pi\sqrt{|J_1^{(2)}J_2^{(2)}|}.$$

Agrees exactly with numerical prediction [Horowitz-Santos '24]! But no Myers-Perry limit... 4 D > 4 B > 4 E > 4 E > 9 Q P

### Summary

- Rigidity theorem: every rotating extremal horizon cross section in a theory satisfying e.g. the dominant energy condition admits a Killing field. There is a "degenerate surface gravity" A controlling the symmetry enhancement of the near-horizon geometry.
- Einstein-Maxwell theory: every rotating 4D solution to the Einstein-Maxwell NHE is given by the Kerr-Newman-(A)dS horizon.
   In 5D, many solutions are known, but probably more are missing.
- Open problems: Charged Myers-Perry horizon? 5D black holes containing new horizon solutions? – Horizon cross sections with only one Killing vector?

# Thank you