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Motivation

Consider a D-dimensional analytic, stationary, asymptotically flat solution
to the vacuum Einstein equations with a connected event horizon.

No-hair theorem [Israel, Hawking, Carter, Robinson, . . . ]: for D = 4
the solution is a member of the Kerr family with parameters (M,J).

Rigidity theorem [Hawking ’72]: (i) the event horizon is a Killing
horizon, and (ii) if the solution is rotating, it is also axisymmetric.

Is there a quasi-local version of these results? =⇒ study of isolated
horizons [Ashtekar, Lewandowski, . . . ].

Extremal and non-extremal cases very different: in the extremal case
the Einstein equations impose constraints involving only intrinsic data.
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Extremal Killing horizons

Let (M, g, T ) be a spacetime of dim. n+ 2 containing an extremal Killing
horizon H with generator ξ and compact cross section M .

Lξg = 0, ξ ⊥ H, d(g(ξ, ξ))
H
= 0.

We assume (M, g, T ) satisfies the Einstein equations (EE)

Ric(g)− 1

2
Rg g = T .
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Near-horizon equations

Definition

The near-horizon data (g,X, T, U) induced on M by (M, g, T ) consists of

The induced Riemannian metric g on M .

A 1-form X ∈ Ω1(M) defined by

dξ
H
= ξ ∧X.

A symmetric (0, 2) tensor T , the pullback of T to M .

A function U on M defined by

ιξT
H
= Uξ.

EE for (M, g, T ) imply near-horizon equations (NHE) for (M, g,X, T, U)

Rab =
1

2
XaXb −∇(aXb) + Tab −

1

n
(gcdTcd + 2U)gab.
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Near-horizon geometry [Kunduri-Lucietti ’13]

Given NH data, define the near-horizon geometry (R2 ×M, gNH, TNH)

gNH = 2dvdr + 2rdv ⊙X + r2Fdv2 + g,

TNH = 2Udvdr + 2rdv ⊙ (β + UX) + r2(α+ UF )dv2 + T .

F = 1
2 |X|2 − 1

2∇aX
a + (1− 2

n )U − 1
ng

abTab,

βa = −(∇b −Xb)Tab − UXa,

α = − 1
2∇aβ

a +Xaβa.

EE for (gNH, TNH) ⇐⇒ NHE for (g,X, T, U).

Sln is static if dX = 0 and dF = XF . It is rotating if X is not exact.
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Outline

1 Rigidity theorem for extremal horizons

2 Examples: p-forms, scalars and non-abelian gauge fields

3 Symmetry enhancement of the near-horizon geometry

4 Classification of extremal horizons in Einstein-Maxwell theory
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Rigidity theorem

In addition to compactness of M , we impose energy conditions

For all null vectors ℓ, T (ℓ, ℓ) ≥ 0. (EC1)

For all null vectors ℓ, T (ℓ, ·) is causal. (EC2)

Extending results in [Dunajski-Lucietti ’23, Colling-Katona-Lucietti ’24]:

Theorem

Let (M, g,X, T, U) be a rotating solution to the near-horizon equations on
a compact manifold M .

If the associated near-horizon geometry satisfies the null energy
condition (EC1), then (M, g) admits a Killing vector field K.

If in addition the condition (EC2) holds, then K preserves the
remaining near-horizon data (X,T, U).

Remark. If (g, T ) satisfies (EC1) or (EC2), then so does (gNH, TNH).
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Tensor identity

K is constructed using an Ansatz. Given a smooth positive function
Γ, define

K♭ = ΓX +∇Γ.

[Dunajski-Lucietti ’23]: on compact M there exists a (unique up to
scaling) choice of Γ s.t. ∇aK

a = 0.

Proposition

If (g,X, T, U) solves the NHE, there exist σ ∈ (M) and τ ∈ C∞(M) s.t.

1

4
|LKg|2 + γ = τ∇aK

a +∇aσ
a,

where
γ = TabK

aKb − 2ΓKaβa − |K|2U + Γ2α.

We have r2γ = TNH(ℓ, ℓ), null vector ℓ = Γe+ − 1
2Γr

2|K|2e− − rKiei.
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Inheritance of symmetry

Integrating tensor identity over M using (EC1) shows LKg = γ = 0.

From TNH(ℓ, ℓ) = 0 and (EC2) we deduce TNH(ℓ, ·) ∝ ℓ, giving

Γα = Kaβa, Γβa + UKa = KbTab.

It follows that LKU = LKT = 0. Proving LKΓ = 0 requires global
argument using elliptic operator [Colling-Dunajski-Kunduri-Lucietti ’24]

Lψ = −∆ψ +∇a((Γ
−1∇aΓ)ψ) + Γ−2|K|2ψ.

Corollary [Kamiński-Lewandowski ’24]: the following function A is
constant

A = −|K|2

2Γ
+

1

2
∆Γ + (1− 2

n)ΓU − 1

n
ΓgabTab.
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Example: p-forms and uncharged scalars

Consider an (n+ 2)-dimensional theory with a p-form F and scalar Φ.

S =

∫ (
R− 1

2
|dΦ|2g − V (Φ)− 2

p!
h(Φ)|F|2g

)
volg + Stop.

On a cross section i :M → M the matter induces a scalar ϕ, a
closed p-form B and a (p− 2)-form C by

ϕ = i∗Φ, B = i∗F , ιξF
H
= ξ ∧ C.

We find γ = 1
2 |LKϕ|2 + 2

(p−1)!h(ϕ)|ιKB − d(ΓC)|2, so if h > 0

LKϕ = 0, ιKB = d(ΓC).

Combine with matter equations to deduce LKB = LKC = 0.

Can define near-horizon matter fields preserved by K

ΦNH = ϕ, FNH = d(−rdv ∧ C) +B.
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Non-abelian gauge fields and charged fields

Consider a gauge field A with gauge group G (compact & semisimple),
curvature F = dA+ 1

2 [A,A] and charged field Φ.

S =

∫
(R− ⟨DΦ,DΦ⟩ − V (Φ)− h(Φ)Tr(FµνFµν)) volg + Stop.

Here DΦ = dΦ+A · Φ is the covariant derivative.

Induced matter data (ϕ,A,C) with curvature B and cov. deriv. D

ϕ = i∗Φ, A = i∗A, ιξF
H
= ξ ∧ C.

γ contains extrinsic data ψ = ∂rDξΦ and Ha = Fra on H (in GNC).

γ = ⟨DKϕ− Γψ,DKϕ− Γψ⟩+ 2h(ϕ)Tr |ιKB −D(ΓC) + ΓDξH|2.

Use matter equations to deduce [Li-Lucietti ’13]

DKϕ = −ΓC · ϕ, ιKB = D(ΓC) =⇒ K preserves (ϕ,A,C)
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Symmetry enhancement

Building on [Kunduri-Lucietti-Reall ’07, Dunajski-Lucietti ’23]:

Theorem

Any (extended) near-horizon geometry satisfying (EC1) and (EC2) with
compact cross sections has isometry group containing the orientation-
preserving isometry group of AdS2, R1,1 or dS2.

Introducing coordinates xi on M and ρ by r = Γ(x)ρ,

gNH = Γ[Aρ2dv2 + 2dvdρ] + gab(dx
a +Kaρdv)(dxb +Kbρdv).

The 2D metric in [ ] is AdS2 if A < 0, R1,1 if A = 0 and dS2 if A > 0.
Isometries of [ ] extend to NHG (with 3D orbits if K ̸≡ 0) when
combined with appropriate shift in a coordinate χ along K.

Isometries preserve EM tensor TNH and near-horizon matter fields.
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Special cases

Example: extremal Kerr. M = S2, A = − 1
2a2

.

gNH =
1 + x2

2

(
− 1

2a2
ρ2dv2 + 2dvdρ

)
+

4a2(1− x2)

1 + x2

(
dϕ+

1

2a2
ρdv

)2

+
a2(1 + x2)

1− x2
dx2.

If the sln is both static and rotating, there is a local isometric splitting

M = S1 ×N, g = −AΓdχ2 + gN , K = ∂χ

In this case the NHG is locally a warped product of AdS3 and N .

A < 0 for rotating solutions satisfying the strong
energy condition. Doubly extremal horizons have
A = 0, e.g. “ultracold” Reissner-Nordström-dS.
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Four-dimensional Einstein-Maxwell theory

Einstein-Maxwell theory: induced data (g,K,Γ, B,C) satisfying NHE and

dB = 0, ιKB = d(ΓC), ∇a(ΓBab) = KbC.

4 dimensions: complete classification (even with Λ!) using rigidity
theorem as in the vacuum case [Dunajski-Lucietti ’23]

Static case: g has constant curvature; Γ, ⋆B,C are constant.
[Chruściel-Tod ’07, Kunduri-Lucietti ’09, Kamiński-Lewandowski ’24]

Axi-symmetric case: the Kerr-Newman horizon is the unique
rotating solution admitting a U(1) action preserving (g,X,B,C).
[Lewandowski-Pawlowski ’03, Kunduri-Lucietti ’09]

Theorem [Colling-Katona-Lucietti ’24]

Every rotating solution to the 4D Einstein-Maxwell NHE is given by an extremal
Kerr-Newman horizon cross section.
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Five dimensions

5D Einstein-Maxwell theory: classification incomplete even assuming
U(1)× U(1) symmetry. Many known solutions; restrict to M = S3.
[Kunduri-Lucietti ’09 ’13, Hollands-Ishibashi ’10,

Blázquez-Salcedo Kunz Navarro-Lérida ’13]

Vacuum: 3-parameter family of solutions, includes horizons of
Myers-Perry and Kaluza-Klein black holes.

Static: 2-parameter family of solutions, with U(1)× U(1)
symmetry and vanishing magnetic field B = 0.

Homogeneous: two 2-parameter families, SU(2)× U(1) symm.

Can add Chern-Simons term ∝ λ F ∧ F ∧ A. “Charged Myers-Perry”
found only for specific value of λ [Chong-Cvetic-Lu-Pope ’05].

[AC, Jun Liu]: explicit 3-parameter family (J1, J2, Q) interpolating
between static solution and KK black hole for any λ.
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New solutions

M = S3, coordinates y ∈ [0, 1], ϕ1,2 ∈ [0, 2π) and parameters (c1, c2, κ).

g =
Γ

4y(1− y)
dy2 +

c31 [c1p0(κ, λ)y + c2p2(κ, λ)(1− y) ]

p1(κ, λ) Γ
(1− y)dϕ21

+
2c21c

2
2p1(κ, λ)

p0(κ, λ)Γ
y(1− y)dϕ1dϕ2 +

c32 [c2p0(κ, λ)(1− y) + c1yp2(κ, λ)]

p1(κ, λ) Γ
ydϕ22,

K = − 2κ

(κ+ 2λ)

√
p3(κ, λ)

(κ2 − 1)

(
c2
c1

∂

∂ϕ1
+
c1
c2

∂

∂ϕ2

)
,

Γ = [c1y + c2(1− y)]2 , C =

√
3c1c2
Γ

√
2(κ2 − 1)

p0(κ, λ)
,

B = −
√
3c1c2
Γ

√
p3(κ, λ)

2p0(κ, λ)
dy ∧

(
c21dϕ1 − c22dϕ2

)
.
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Entropy relations

Angular momenta Ji = J [mi], charge Q and entropy S = 1
4Volg(M)

are accessible from horizon data.

Integrating the constant A = − |K|2
2Γ + 1

2∆Γ− 4
3ΓC

2 − 1
3Γ|B|2 leads

to the entropy law [Hajian Seraj Sheikh-Jabarri ’14]

A

2π
S =

∑
i

ωiJi +
4

3
µQ,

where K =
∑

i ω
imi and µ = ΓC + ιKb, B = db.

In addition, for λ = 0 the two branches satisfy

S(1) =
4
√
π|Q(1)|3/2

33/4
+

33/4π3/2

4

|J (1)
1 J

(1)
2 |

|Q(1)|3/2
, S(2) = 2π

√
|J (2)

1 J
(2)
2 |.

Agrees exactly with numerical prediction [Horowitz-Santos ’24]! But no
Myers-Perry limit...
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Summary

Rigidity theorem: every rotating extremal horizon cross section in a
theory satisfying e.g. the dominant energy condition admits a Killing
field. There is a “degenerate surface gravity” A controlling the
symmetry enhancement of the near-horizon geometry.

Einstein-Maxwell theory: every rotating 4D solution to the
Einstein-Maxwell NHE is given by the Kerr-Newman-(A)dS horizon.
In 5D, many solutions are known, but probably more are missing.

Open problems: – Charged Myers-Perry horizon? – 5D black holes
containing new horizon solutions? – Horizon cross sections with only
one Killing vector?

Thank you
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