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• I first met Jurek in the beginning of 1993 in Syracuse, when

I visited Abhay Ashtekar.
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• Then, in September 1993 started a sabbatical year in Penn

State. Jurek was not there, because he was starting a

postdoctoral position in Gainsville. That year was fantas-

tic thanks to the excellent conditions and extremely friendly

atmosphere that Abhay Ashtekar created for all of us.

• We started with Don Marolf working on trying to understand

the support of the Ashtekar-Lewandowski measure. Got it

wrong first but then corrected it in time to present the results

in the Cornelius Lanczos International Centenary Conference,

Chapel Hil, North Carolina, December, 1993.
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• We were all five there, ALMMT, in the Lanczos Conference,

and we started discussing.
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• After Lanczos, Abhay and Jurek applied further the projective techniques
to develop calculus and differential geometry on the space of quantum
connections modulo gauge transformations.
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• Sometime in the beginning of 1994 we came across a preprint

(written in May, 1993) by Brian Hall, ”On the Segal-Bargman

coherent state transform for compact Lie groups.”

• As a consequence we started a marathon to try to extend

the results of Brian Hall’s paper to spaces of connections

modulo gauge transformations.
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• Four of us (AMMT) were in State College and one (L) in

Gainsville, with just email, phone and fax machines.

• We would have long working meetings in State College and

then would send our findings to Jurek.

• Very often he would tell us, yes, yes I know what you are

telling me, but look what I did besides that ... Or Jurek

would not agree with the path we had chosen and, as far as I

remember, most of the times, we would agree that his path

was best.
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• This led to our journal of functional analysis paper, “Cohe-

rent state transforms for spaces of connections”submitted in

December 1994.

• Most of my research since then was shaped by this paper and

a key development by Thomas Thiemann, finding a complex

canonical transformation mapping the SU(2) spin connection

to SL(2,C)–Ashtekar connection, “Reality conditions indu-

cing transforms for quantum gauge field theory and quantum

gravity”, submitted in December, 1995.
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I. Schrödinger quantization and quest for momentum
space quantization

For systems with phase spaces given by cotangent bundles M =
T ∗N with canonical symplectic form there is a natural quantiza-
tion with quantum Hilbert space

HQ
Sch = L2(N, dν(x)) ,

for some measure dν on the configuration space N .

This is called the Schrödinger quantization and it is distinguished
by the fact that classical observables that are functions of x alone
(pullback of functions on N), fF (x, p) = F (x), act diagonally,

f̂F = mF = F .

These observables form a maximal abelian subalgebra of the
(Poisson) algebra of observables and are the preferred observa-
bles of Schrödinger quantization.
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If N = Rn or, more generally, N = Rn−q × T q, where T q is a

q–dimensional torus, then the Schrödinger quantization of

M = T ∗Rn−q × T ∗T q

is unitarily equivalent to the momentum quantization with wave

functions given by (in general distributional) functions of mo-

menta. In the momentum space quantization the maximal abe-

lian subalgebra of preferred observables is that of functions of p

alone.

Unitary equivalence of the two quantizations is given by the Fou-

rier transform (discrete in the q directions of the torus).
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For more general configuration manifolds N as eg symmetric

spaces, N = G/H, the standard momentum space quantization

of T ∗G/H may not exist (or may not be interesting; In the case

above N was an abelian Lie group and the momentum quanti-

zation corresponds to the decomposition of the quantum Hilbert

space as direct integral of unitary irreducible representations of

N).

An “interesting” momentum space quantization with quantum

Hilbert space, HQ
mom, should include a direct integral (summ)

decomposition of HQ
mom into irreducible representations of G.

This means that Casimir observables of the Hamiltonian G action

(on T ∗G/H) should be included in the preferred observables of

any momentum space quantization and thus act diagonally. Such

quantizations are then better called Fourier quantizations, HQ
F.
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II. Ambiguity of quantization and preferred observa-
bles

The dream of the founders of quantum mechanics was to have

quantization as a well defined process assigning a quantum sys-

tem to every classical system and satisfying the correspondence

principle

Quantization Functor (?) : (M,ω) 7→ Qℏ(M,ω)
ℏ→07→ (M,ω)

It was soon realized that this can never be the case even for the

simplest systems.
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Groenewold (1946) – van Hove (1951) no go Thm:

It is impossible, even for systems with one degree of freedom, to quantize all
observables exactly as Dirac hoped

Qℏ(f) = f̂

[Qℏ(f), Qℏ(h)] = iℏQℏ({f, g})
and satisfy natural additional requirements like irreducibility of the quantiza-
tion.

In order to quantize one needs to add additional data to the classical system.
eg choose a (sufficiently big but not too big ...) (Lie) subalgebra of the
algebra of all observables

A = SpanC{1, q, p}
Then we have to study the dependence of the quantum theory on the addi-
tional data.
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III. Geometric Quantization comes to the rescue

Fortunately Geometric Quantization allows to put (some) or-

der in the apparent mess of this infinite dimensional family of

different quantizations by introducing a “parametrization”in the

space of quantizations of a fixed classical system.

Geometric quantization is mathematically perhaps the best de-

fined quantization.

20



(M,ω),
1

2πℏ
[ω] ∈ H2(M,Z)

Prequantum data: (L,∇, h), L→M,F∇ = ω
ℏ

Pre-quantum Hilbert space:

HprQ = ΓL2(M,L) =
{
s ∈ Γ∞(M,L) : ||s||2 =

∫
M
h(s, s)

ωn

n!
<∞

}

Pre-quantum observables:

f̂ = QprQ
ℏ (f) = f̂prQ = iℏ∇Xf

+ f
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This almost works! But the Hilbert space is too large, the re-

presentation is reducible.

We need a smaller Hilbert space: Prequantization ⇒ Quantiza-

tion
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Additional Data in Geometric Quantization

Generalizing what is done in the Schrödinger quantization, for

systems with one degree of freedom, to fix a quantization one

chooses (locally) a preferred observable – F (q, p)– and then works

with wave functions of the form

HprQ ⇝ HQ
PF

=
{
Ψ ∈ HprQ : ∇XF Ψ = 0, ||Ψ|| <∞

}
=

=
{
Ψ(q, p) = ψ(F ) e− k(q,p), ||Ψ|| <∞

}
⊂ HprQ

on which the preferred observable F and functions of it u(F )

act diagonally

QFℏ (u(F )) = ̂u(F )
prQ

|HQ
PF

= u(F ).
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For systems with n degrees of freedom one chooses (locally) n in-

dependent (possibly complex) observables in involution F1, . . . , Fn,

{Fj, Fk} = 0. The polarization associated with this choice is the

distribution

PF =< XFj , j = 1, . . . n > .

Equivalently, it is an integrable Lagrangian subbundle of the com-

plexified tangent bundle of M .

HQ
PF

=
{
Ψ ∈ HprQ : ∇XFj

Ψ = 0, ||Ψ|| <∞, j = 1, . . . , n
}
=

=
{
Ψ(q,p) = ψ(F1, . . . , Fn) e

− k(q,p), ||Ψ|| <∞
}
⊂ HprQ

24



(Non–)Equivalence of different Quantizations

Are all these quantizations (for different choices of F ) physically

equivalent?

NO!

Consider the observable: Hλ = p2

2 + q2

2 + λq
4

4 , λ ≥ 0

and let SpSch(Hλ) denote the (discrete) spectrum of Hλ in the

Schrödinger quantization, i.e. the spectrum of the operator

QSch
ℏ (Hλ) = −

ℏ2

2

∂2

∂q2
+
q2

2
+ λ

q4

4

acting on HQ
Sch = HQ

PSch
= L2(R, dq).
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Now consider the 1–parameter family of quantizations with Hil-

bert spaces HQ
Hλ

for which the role of preferred observable is

played by Hλ. Then, one finds that

HQ
PHλ

=
{
Ψ(q, p) : ∇XHλ

Ψ = 0
}
=

=
{
Ψ(q, p) = ψ(Hλ) e

iGλ(q,p)
}
=

=


∞∑
n=0

ψn δ(Hλ − Eλn) e
iGλ(q,p)

 , (1)

where Eλn are defined by the Bohr-Sommerfeld conditions∮
Hλ=Eλn

pdq = ℏ (n+
1

2
). (2)
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Since Hλ acts diagonally on this quantization we conclude from

(1) that its spectrum in this quantization is given by (2)

SpHλ(Hλ) = {Eλn, n ∈ N0}

It is known that on one hand that for the harmonic oscillator,

H0,

SpSch(H0) = SpH0(H0)

but on the other hand

SpSch(Hλ) ̸= SpHλ(Hλ)

for all λ > 0 so that the two quantizations QSch
ℏ and Q

XHλ
ℏ are

physically inequivalent if λ > 0! Wins QSch
ℏ !
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IV. Fourier and Momentum polarizations and quanti-
zations

IV.1 Fourier Polarizations

Let (M,ω,G, µ) denote an Hamiltonian action of the connected
Lie group G on the symplectic manifold (M,ω) with equivariant
moment map

µ : M −→ g∗ .

Then if P0 is a G–invariant polarization geometric quantization
defines a unitary representation of G on HP0

. Consider its direct
integral (summ) decomposition into irreducible representations
π

HQ
P0

=
∫
Ĝ

H(π)
P0

dν̂(π) (3)
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Let C1, . . . , Cr ∈ Z(U(g)) be independent Casimir generators seen

as polynomial functions on g∗ and denote by C̃j their µ pullback

to M

C̃j = µ∗(Cj) = Cj ◦ µ . (4)

A particular class of G–invariant polarizations are the real or

mixed polarizations PF which include the r directions (not ne-

cessarily independent) corresponding to the Casimir functions

XCi ∈ ΓPF , i = 1, . . . , r .
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This implies that PF–polarized states have locally the form

HQ
PF =

{
ψ̃(C̃1, . . . , C̃r′, y1, . . . , yn−r′) e

iα
}
, (5)

where r′ denotes the number of independent Casimir functions.
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We have then two related consequences.

(i) The prequantum operators corresponding to C̃j, j = 1, . . . , r′, act diago-

nally on HQ
PF (

prQ(C̃j)(ψ̃)
)
(p) = C̃j ψ̃(p) (6)

where

p = (C̃1, . . . , C̃r′, y1, . . . yn−r′)

(ii) From (5) and (6) the isotypical of HQ
PF is given by construction

HQ
PF =

∫
Ĝ

H(π)
PF dν̂(π) , (7)

where

H(π)
PF =

{
ψ̃(c(π)1 , . . . , c(π)r′ , y1, . . . , yn−r′)

}
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IV.2 Momentum Polarizations

Depending on (M,ω,G, µ), there are different possibilities of com-

plementing

⟨X
C̃1
, . . . , X

C̃r′
⟩

to a Fourier polarization.

We call a G–invariant polarization a momentum polarization if

it is Fourier and all the remaining polarized functions y1, . . . , yn−r′
correspond to the pullback of functions from g∗.

In [BHKMN25] and [BFHMN25] we considered the cases M =

T ∗(U) and M = T ∗(U/K), for U a compact connected Lie group

and U/K a compact symmetric space.
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The momentum polarizations we considered on M = T ∗(U) ∼=
T ∗((U × U)/U) and M = T ∗(U/K) correspond to complemen-

ting the Casimir functions with U × U and U–invariant complex

structures on the coadjoint orbits in µ(T ∗(U/K)).
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Example Let us consider the example

T ∗(SU(2)/U(1)) ∼= T ∗(S2) .

Polarized functions generating the momentum polarization

H = ||ξ|| =
√
ξ21 + ξ22 + ξ23

w =
ξ1 + iξ2
||ξ|| − ξ3

and we get

Hmom
P =

{
ψ̃(H,w) eiα

}
where

ψ̃(H,w) =
∞∑
n=1

cnδ(H − n−
1

2
) pn(w) .

and pn are polynomials of degree n.
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IV.3 Riemannian symmetric spaces of noncompact type

Of interest, also for the Geometric Langlands programme, is the

case of Riemannian noncompact symmetric spaces, G/K (sym-

metric space dual of U/K), with G–semisimple and K its maximal

compact subgroup,

M = T ∗(G/K) .

(example to have in mind: G = SL(n,R),K = SO(n,R) and for

the Iwasawa decomposition, A = positive diagonal matrices with

determinant 1 and N the upper triangular matrices with ones in

the diagonal).
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Iwasawa decomposition:

g = k1(g) e
H(g) n1(g) (= GS applied to columns)

= n2(g) e
A(g) k2(g) (= GS applied to rows)

Use the invariant inner product on g to identify T ∗(G/K) with

T (G/K). The moment map on T (G/K) reads

µ : T (G/K) ∼= G×K m −→ g

[g, u] 7→ Adg(u)
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The following result is known.

Theorem (W. Lisiecki) The fibers of the map

ψ : Treg(G/K) −→ K/M × a+

[g,H] 7−→ (k1(g)M,H) (8)

define a momentum polarization with generating polarized func-

tions

Pmom : Fλ([g,H]) = λ(H)

Gf([g,H]) = f(k1(g)M) (9)
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An important method to relate the quantizations corresponding

to two polarizations consists in finding a one parameter group of

(possibly complexified) canonical thansformations mapping one

polarization to the other.

We have

Theorem (A Ferreira, J Hilgert, JM, JP Nunes)

lim
t→∞

(φ
Xh
t )∗

(
PSch

)
= Pmom .

The next result, which are completing, shows that the appro-

priate lift of this theorem to the quantum bundle is (unlike the

BKS pairing map) unitarily equivalent to the Fourier–Helgason

transform.
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Thank You my dear friend Jurek!

Thank You for all you have given to your family and
friends, to science, to me
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