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Why bother?

Why (2+1)-dim. general relativity with A < 0 interesting?

» AdS3/CFT»
» Interesting solutions (e.g. BTZ black holes)

> Mass is interesting



Outline
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3. Gluings of Solutions



Solutions of Interest



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

R;U/pa = /\(gupgua - guogup) . (1)



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rul/pa = /\(gupgua - guogup) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rul/pa = /\(gupgua - guagup) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

P particle-like solutions and their quantisation with A = 0:
Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rul/pa = /\(gupgua - guagup) . (1)
(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)
Even in vacuum, global properties allow for interesting solutions:

P particle-like solutions and their quantisation with A = 0:
Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)

» Black hole solutions for A < 0: Banados, Teitelboim, Zanelli
(1992)



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rul/pa = /\(gupgua - guagup) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:
P particle-like solutions and their quantisation with A = 0:
Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)
» Black hole solutions for A < 0: Bafiados, Teitelboim, Zanelli
(1992)
» unusual properties of energy with A = 0: Ashtekar and
Varadarajan (1994)



Solutions of Interest
Peculiarities of 241

» All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rul/pa = /\(gupgua - guagup) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

P particle-like solutions and their quantisation with A = 0:
Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)

» Black hole solutions for A < 0: Banados, Teitelboim, Zanelli
(1992)

» unusual properties of energy with A = 0: Ashtekar and
Varadarajan (1994)

» what about energy with A < 07
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Solutions of Interest

Known static solutions

1-parameter family of vacuum solutions [Bafiados, Teitelboim, Zanelli, '92]

g1 = —(r* — m)dt® +

d 2
! + r2d4p2
—m

r2

» m > 0: BTZ black hole
m < 0: metric has one conical singularity unless m = —1
> m=—1: Ad53

\4

dr?
2 2

= —(r*+1)dt* +

82+1 (r ) 211

2-dim hyperbolic space

+ r2dg02

P> many interesting quotients of 2-dim hyperbolic space are
possible: compact, or with several locally asymptotically
hyperbolic ends, or with cusps, or ...
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» |t suffices to work with initial data (M, g, K)
> vacuum & time-symmetric Kj =0 = R(g) = —2

» To define mass: consider metrics which approach

- dr?

2 2

with ¢ € [0, 27] at large distances:

Definition
A metric is called asymptotically locally hyperbolic if

g=b+r2u0'¢ + O(r—3)

where the error terms are to be understood as coefficients in a
b-ON coframe

» the tensor field pjj = pji(p) is called the mass aspect tensor
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Mass in 2 Dimensions

Definition continued

> Write = 11;;0'¢”, where

0> =rtdr, 0'=rdyp
» The Hamiltonian mass a la Kijowski-Tulczyjew reads

1
_27I' oM

21 oM

H

(122 + 2p11) dp =: pde

where 1 is called the mass aspect function

» Example: g = a4 r’de?, H=m

r’—m

» Note AdS has mass m= —1 ...

» Is H well defined?

» Is H bounded from below by —17
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1
H  =H+1= > Sl(uzz + 2u11)dp + 1, 2)
M
1

1
H' = — d H? .= — [ i de.
o /51 cos(¢) pdy, o7 Ja sin(ip) 1 dep. (3)



Hamiltonian charges and Witten's-type positivity proof

1
H° —H+1_? (M22+2M11)d80+1, (2)
™ 1 N ——
m
H! 1 cos(p) v d H? L sin(p) pde. (3)
= = — i .
ol e QUL el RN

Let P;j = Kjj — trKgj;, define the angular momentum aspect j

1
J::2/ lim 2P",+/detg dy (4)
T RR—>OO
o —— dp, C?:=_— d
=5 |_sin(¢)jdy, = cos(p)jdy.  (5)
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>

| 2

The Witten positivity proof [witten '81] applies in
space-dimension two [PTC, Herzlich '01; Cheng, Skenderis '05]

[PTC, Cong, Queau, Wutte, '24]: the fact that
two-dimensional ALH manifolds with only one asymptotic end
carry exactly one spin structure, but with more than one
asymptotic region or with interior boundaries carry two, has a
surprising consequence:
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Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M, g) be a smooth, complete Riemannian manifold, possibly
with black-hole boundary, and suppose that (M, g, K) is ALH and
satisfies the dominant energy condition. Then

HO+1> J]+ /|G + [P +2| % (F A ). (6)

If (M, g) carries a second spin structure (e.g., there is a black-hole
boundary or another asymptotic end), then in addition to (6) it
holds that

Ho > J]. (7)

But: are these objects well defined?
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Asymptotic Symmetries [Brown and Henneaux '86]

Acting with asymptotic symmetries

with new mass aspect function

A n ~\2 N Ay @) 3 (@)
i = u(F@)F(@) - 25(A)(@), S(A@) =& - 3 (75
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We have
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Mass in 2 Dimensions

We have

1 1

A= | pdp=_— | (u(f(2))f(2)*—25(f)(2)) dp
™ Jst ™ Jst

with no clear relation to

1
H=— pdyp
21 St

Geometric invariant? transform p to a constant?

Theorem (Balog, Feher, Palla (1997))

There exist functions . which cannot be mapped to a constant by
an asymptotic symmetry.
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Mass in 2 Dimensions

Hi o= [ (A@)F(ER = 25(F)(2))

» Geometric invariant via minimisation 7

Schwartz's Lemma: if g > —1, then the infimum exists and
satisfies
Hlu] = ir}f Hw; f] > —1.

Theorem (Bafiados (1999))

For every i there exists a vacuum metric without singularities near
the conformal boundary.

but elsewhere?



Mass in 2 Dimensions

Hi o= [ (A@)F(ER = 25(F)(2))

» Geometric invariant via minimisation 7

Schwartz's Lemma: if g > —1, then the infimum exists and
satisfies
Hlu] = ir}f Hw; f] > 1.

Remark: “Bad” has many flavors, which complicates a lot all
relevant arguments.
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Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M, g) be a smooth, complete Riemannian manifold, possibly
with black-hole boundary, and suppose that (M, g, K) is ALH and
satisfies the dominant energy condition. Then the mass aspect
function cannot be bad and

HO+1> U+ \ICR+1BR+2x(BAD).  (8)

If (M, g) carries a second spin structure (e.g., there is a black-hole
boundary or another asymptotic end), then in addition to (8) it
holds that

H° > |J]. (9)



Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.



Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,



Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,

3. with the mass aspect can be mapped to a constant by an
asymptotic symmetry



Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,

3. with the mass aspect can be mapped to a constant by an
asymptotic symmetry

4. unless we are in the ugly case:

H = —1 and not AdS.



Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,

3. with the mass aspect can be mapped to a constant by an
asymptotic symmetry

4. unless we are in the ugly case:

H = —1 and not AdS.

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with
an ugly mass aspect function which are smooth except for one
conical point.
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Mass gap?

all good mass aspect functions are realised by
1. hyperbolic space (m = —1),
2. together with the BTZ black holes (m € (0, 00)), or
3. by a single conical singularity (m € (—1,0))

’

static, smooth, vacuum, ALH, complete: there is a mass gap

m¢ (—1,0)
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Recall the scalar constraint equation

R =p+ 2N+ |K|? — (trK)?,

where p is the matter density, and A is the cosmological constant,

here normalised to —1.

For metrics of the form
g= f‘*ldr2 + r2d<,02,

with trK = 0 one has

H= 1+ 1/00/ (2 LK) 4
- or ), Jor \P 2r2f2

of |2
(%) )rdrdgo

(boundaryless case).
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Penrose inequality

Recall the scalar constraint equation

R =p+ 2N+ |K|? — (trK)?,

where p is the matter density, and A is the cosmological constant,

here normalised to —1.

For metrics of the form
g= f‘*ldr2 + r2d<,02,

with trK = 0 one has

Herd g - /OO/ (2 K] 4 —
=r
" or ), S\ 2rF2

of |2
(%) )rdrdgo

(black hole boundary with length rp).

(10)

(11)
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Gluing of initial data metrics

what is the mass of the glued metric?

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with

an ugly mass aspect function which are smooth except for one
conical point.
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Gluing n > 3

Gluing Theorems in n > 3
[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]

> Key step of localised gluing: deformation of initial data set in
€ half-balls such that, within a half-ball of radius ¢, the metric
becomes manifestly hyperbolic

» When n = 2, all solutions to the vacuum time-symmetric
constraint equations are locally isometric

» Gluing is simple in n =2

» Mass is not
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Gluing n = 2, constant negative scalar curvature

1.

Start with an ALH metric with constant scalar curvature near
the boundary at infinity and mass aspect function p(y)

2. Pick a point p on the conformal boundary

3. Find a diffeomorphism of S! such that ;1 = —1 near p

4. Blow-up a small neighborhood of p using boosts (isometries

of hyperbolic space)

Cut and glue = metric extends smoothly across gluing surface

(M, 91) (Ma, g2) (M, g)



Gluing n = 2, constant negative scalar curvature

(M1, 91) (M, g2) (M, g)

What is the mass of the resulting manifold?



Gluing n =2

Theorem (Chrusciel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension
n = 2 with constant scalar curvature we have: If the initial masses
my and my are positive, then the glued manifold has mass m > 0
equal to

cosh(y/mm) = 2wywo cosh(y/my) cosh(y/mpm) — cosh(y/mim — \/ma7)

with gluing parameters wy > 1, wp > 1.



(M1, g1)

Gluing n = 2, constant negative scalar curvature

(M2, g2)

(M, g)

Idea of the proof: leverage [Balog, Feher, Palla 1997]
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Gluing n = 2, constant negative scalar curvature

(M, g1) (Ma, g2) (M, 9)

Idea of the proof: leverage [Balog, Feher, Palla 1997]

» They classified functions y : S' — R up to transformations
p— i = (f)?pof —2S(f) where f € Difft(S?)

» Classifying 1 turns out to be equivalent to classifying
Diff +(S')-inequivalent solutions to the “Hill equation”:



Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with ¢ € R, where u(y) is 2m-periodic:
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Consider the Hill equation, with ¢ € R, where u(y) is 2m-periodic

R
d2¢ 47
The point is that under changes ¢ — @ = f(¢) the function
U(f(¥))

U(p) == 7o)

satisfies again a Hill equation
Bl — Bd =0, with i = ()’ o f —25(F).
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Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with ¢ € R, where u(y) is 2m-periodic:

Py o

d?p 4
The point is that under changes ¢ — @ = f(¢) the function
. P(f(e)
P(p) = wi(e)

f'(¢)
satisfies again a Hill equation

b BT

7, —a¥ =0, with i = (f")? o f —25(f).

The classification of the functions u up to the transformation
1+~ i can be derived from the invariants of the Hill equation
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Invariants of the Hill equation

7, 4l =0 w is 2m-periodic and ¢ € R.

1. Number of zeros of 1.
2. Monodromy matrix: Let W := (11, 5) be a basis of solutions.
Periodicity of u implies that

V(2 + ) = (Y127 + ¢), ¥2(27 + ¢))

is also a basis of solutions. Hence there exists a matrix M,
called monodromy matrix, such that

V(2T + ) = MV(p).
Under a change of basis W — AW, the matrix M changes as
M AMA™L.

Trace of M is an invariant.



Back to our problem

Gluing n = 2, constant negative scalar curvature

(M1, g1)

(M2, g2)

(M, g)

What is the mass of the resulting manifold?

DA



Gluing n =2

(M1, q1) (Ma, g2) (M, g)

)

1. Start with
(M, g1), together with p; and associated (W1, M)
(Ma, &), together with p» and associated (Wo, Mj)

\]1:11



Gluing n =2

(M1, q1) (Ma, g2)

U = q)-
‘ /
/

U =1 1

1. Start with
(M, g1), together with p; and associated (W1, M)
(Ma, &), together with p» and associated (Wo, Mj)

2. Glue the manifolds and associated Hill's functions W1 and V5>
= (V, M)



Gluing n =2

Ml 91

M27!]2

(M. g) U=y
<‘ QIb/
V=1

A calculation gives

M=-M;M,.

DA



Gluing n =2

(My, g2) (M, g)

©)- 0

=1y

A calculation gives:
M=-MM,.

Together with the zeros of the glued Hill functions W this gives the
mass of glued manifold by employing the classification result by
[Balog, Feher, Palla '97].



Example result

Theorem (Chrusciel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension
n = 2 with constant scalar curvature we have: If the initial masses
my and my are positive, then the glued manifold has mass m
determined from the equation

cosh(y/mm) = 2wiwy cosh(y/mym) cosh(/mym) — cosh(y/mim — /mapm)

with gluing parameters wy > 1, wp > 1



An already mentioned application

Theorem (Chrusciel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete
asymptotically locally hyperbolic metrics with constant scalar
curvature which are smooth except for at most one conical
singularity.



An already mentioned application

Theorem (Chrusciel, Wutte, arXiv:2401.04048)
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curvature which are smooth except for at most one conical
singularity.

Recall: constant scalar curvature metrics provide vacuum time
symmetric general relativistic initial data.



An already mentioned application

Theorem (Chrusciel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete
asymptotically locally hyperbolic metrics with constant scalar
curvature which are smooth except for at most one conical
singularity.

Recall: constant scalar curvature metrics provide vacuum time
symmetric general relativistic initial data.

Proof: by gluing constant ;1 = m solutions, calculating the
monodromy, and checking that one exhausts all cases of the
classification by Balog, Feher and Palla.



