Hyperbolic Mass in 2+1 Dimensions

Piotr T. Chruściel
Beijing Institute of Mathematical Sciences &
Centrum Fizyki Teoretycznej PAN

meeting in memory of Jurek Lewandowski Warsaw, September 2025

joint work with Raphaela Wutte, arXiv:2401.04048 & with W. Cong, T. Queau, R. Wutte, arXiv:2411.07423

Why bother?

Why (2+1)-dim. general relativity with $\Lambda < 0$ interesting?

- ► AdS₃/CFT₂
- Interesting solutions (e.g. BTZ black holes)
- Mass is interesting

Outline

- 1. Solutions of Interest
- 2. Mass
- 3. Gluings of Solutions

Peculiarities of 2+1

► All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

Peculiarities of 2+1

 All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

(Our analysis only requires asymptotically vacuum in any case, so this is only relevant asymptotically.)

Peculiarities of 2+1

 All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

(Our analysis only requires asymptotically vacuum in any case, so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

▶ particle-like solutions and their quantisation with $\Lambda = 0$: Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)

Peculiarities of 2+1

 All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

(Our analysis only requires asymptotically vacuum in any case, so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

- ▶ particle-like solutions and their quantisation with $\Lambda = 0$: Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)
- ▶ Black hole solutions for $\Lambda < 0$: Bañados, Teitelboim, Zanelli (1992)

Peculiarities of 2+1

 All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

(Our analysis only requires asymptotically vacuum in any case, so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

- ▶ particle-like solutions and their quantisation with $\Lambda = 0$: Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)
- ▶ Black hole solutions for $\Lambda < 0$: Bañados, Teitelboim, Zanelli (1992)
- unusual properties of energy with $\Lambda=0$: Ashtekar and Varadarajan (1994)

Peculiarities of 2+1

 All vacuum solutions to Einstein gravity at fixed cosmological constant are locally isometric

$$R_{\mu\nu\rho\sigma} = \Lambda(g_{\mu\rho}g_{\nu\sigma} - g_{\mu\sigma}g_{\nu\rho}). \tag{1}$$

(Our analysis only requires asymptotically vacuum in any case, so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

- ▶ particle-like solutions and their quantisation with $\Lambda=0$: Staruszkiewicz (1963), Deser-t'Hooft (1984), t'Hooft (1993)
- ▶ Black hole solutions for $\Lambda < 0$: Bañados, Teitelboim, Zanelli (1992)
- unusual properties of energy with $\Lambda=0$: Ashtekar and Varadarajan (1994)
- what about energy with $\Lambda < 0$?

Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, '92]

$$g_{2+1} = -(r^2 - m)dt^2 + \frac{dr^2}{r^2 - m} + r^2d\varphi^2$$

ightharpoonup m > 0: BTZ black hole

Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, '92]

$$g_{2+1} = -(r^2 - m)dt^2 + \frac{dr^2}{r^2 - m} + r^2d\varphi^2$$

- \rightarrow m > 0: BTZ black hole
- ightharpoonup m < 0: metric has one conical singularity unless m = -1

Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, '92]

$$g_{2+1} = -(r^2 - m)dt^2 + \frac{dr^2}{r^2 - m} + r^2d\varphi^2$$

- ightharpoonup m > 0: BTZ black hole
- ightharpoonup m < 0: metric has one conical singularity unless m = -1
- ▶ m = -1: AdS₃

Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, '92]

$$g_{2+1} = -(r^2 - m)dt^2 + \frac{dr^2}{r^2 - m} + r^2d\varphi^2$$

- \rightarrow m > 0: BTZ black hole
- ightharpoonup m < 0: metric has one conical singularity unless m = -1
- ▶ m = -1: AdS₃

$$g_{2+1} = -(r^2 + 1)dt^2 + \underbrace{\frac{dr^2}{r^2 + 1} + r^2 d\varphi^2}_{\text{2-dim hyperbolic space}}$$

Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, '92]

$$g_{2+1} = -(r^2 - m)dt^2 + \frac{dr^2}{r^2 - m} + r^2d\varphi^2$$

- ightharpoonup m > 0: BTZ black hole
- ightharpoonup m < 0: metric has one conical singularity unless m = -1
- ▶ m = -1: AdS₃

$$g_{2+1} = -(r^2+1)dt^2 + \frac{dr^2}{r^2+1} + r^2d\varphi^2$$
2-dim hyperbolic space

many interesting quotients of 2-dim hyperbolic space are possible: compact, or with several locally asymptotically hyperbolic ends, or with cusps, or ...

Mass

▶ It suffices to work with initial data (M, g, K)

- It suffices to work with initial data (M, g, K)
 - ▶ vacuum & time-symmetric $K_{ij} = 0 \Rightarrow R(g) = -2$

- ▶ It suffices to work with initial data (M, g, K)
 - ▶ vacuum & time-symmetric $K_{ij} = 0 \Rightarrow R(g) = -2$
- ► To define mass: consider metrics which approach

$$b = \frac{dr^2}{r^2} + r^2 d\varphi^2$$

with $\varphi \in [0, 2\pi]$ at large distances:

- ▶ It suffices to work with initial data (M, g, K)
 - ▶ vacuum & time-symmetric $K_{ij} = 0 \Rightarrow R(g) = -2$
- ► To define mass: consider metrics which approach

$$b = \frac{dr^2}{r^2} + r^2 d\varphi^2$$

with $\varphi \in [0, 2\pi]$ at large distances:

Definition

A metric is called asymptotically locally hyperbolic if

$$g = b + r^{-2}\mu_{ij}\theta^i\theta^j + O(r^{-3})$$

where the error terms are to be understood as coefficients in a *b*-ON coframe

- ▶ It suffices to work with initial data (M, g, K)
 - ▶ vacuum & time-symmetric $K_{ij} = 0 \Rightarrow R(g) = -2$
- ► To define mass: consider metrics which approach

$$b = \frac{dr^2}{r^2} + r^2 d\varphi^2$$

with $\varphi \in [0, 2\pi]$ at large distances:

Definition

A metric is called asymptotically locally hyperbolic if

$$g = b + r^{-2}\mu_{ij}\theta^i\theta^j + O(r^{-3})$$

where the error terms are to be understood as coefficients in a b-ON coframe

• the tensor field $\mu_{ii} = \mu_{ii}(\varphi)$ is called the mass aspect tensor

Definition continued

▶ Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

Definition continued

• Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

The Hamiltonian mass à la Kijowski-Tulczyjew reads

$$H = \frac{1}{2\pi} \int_{\partial M} (\mu_{22} + 2\mu_{11}) \, d\varphi =: \frac{1}{2\pi} \int_{\partial M} \mu \, d\varphi$$

Definition continued

▶ Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

► The Hamiltonian mass à la Kijowski-Tulczyjew reads

$$H = \frac{1}{2\pi} \int_{\partial M} (\mu_{22} + 2\mu_{11}) \, d\varphi =: \frac{1}{2\pi} \int_{\partial M} \mu \, d\varphi$$

• Example:
$$g = \frac{dr^2}{r^2 - m} + r^2 d\varphi^2$$
, $H = m$

Definition continued

• Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

The Hamiltonian mass à la Kijowski-Tulczyjew reads

$$H = \frac{1}{2\pi} \int_{\partial M} (\mu_{22} + 2\mu_{11}) \, d\varphi =: \frac{1}{2\pi} \int_{\partial M} \mu \, d\varphi$$

- Example: $g = \frac{dr^2}{r^2 m} + r^2 d\varphi^2$, H = m
- Note AdS has mass $m = -1 \dots$

Definition continued

• Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

The Hamiltonian mass à la Kijowski-Tulczyjew reads

$$H = \frac{1}{2\pi} \int_{\partial M} (\mu_{22} + 2\mu_{11}) \, d\varphi =: \frac{1}{2\pi} \int_{\partial M} \mu \, d\varphi$$

- Example: $g = \frac{dr^2}{r^2 m} + r^2 d\varphi^2$, H = m
- Note AdS has mass $m = -1 \dots$
- ► Is *H* well defined?

Definition continued

• Write $\mu = \mu_{ij}\theta^i\theta^j$, where

$$\theta^2 = r^{-1} dr \,, \quad \theta^1 = r d\varphi$$

► The Hamiltonian mass à la Kijowski-Tulczyjew reads

$$H = \frac{1}{2\pi} \int_{\partial M} (\mu_{22} + 2\mu_{11}) \, d\varphi =: \frac{1}{2\pi} \int_{\partial M} \mu \, d\varphi$$

- Example: $g = \frac{dr^2}{r^2 m} + r^2 d\varphi^2$, H = m
- Note AdS has mass $m = -1 \dots$
- ► Is *H* well defined?
- ▶ Is H bounded from below by -1?

Hamiltonian charges and Witten's-type positivity proof

$$H^{0} := H + 1 = \frac{1}{2\pi} \int_{S^{1}} (\underbrace{\mu_{22} + 2\mu_{11}}_{\mu}) d\varphi + 1, \qquad (2)$$

Hamiltonian charges and Witten's-type positivity proof

$$H^0 := H + 1 = \frac{1}{2\pi} \int_{S^1} (\underbrace{\mu_{22} + 2\mu_{11}}_{\mu}) d\varphi + 1,$$
 (2)

$$H^{1} := \frac{1}{2\pi} \int_{S^{1}} \cos(\varphi) \, \mu \, d\varphi \,, \qquad H^{2} := \frac{1}{2\pi} \int_{S^{1}} \sin(\varphi) \, \mu \, d\varphi \,.$$
 (3)

Hamiltonian charges and Witten's-type positivity proof

$$H^{0} := H + 1 = \frac{1}{2\pi} \int_{S^{1}} (\underbrace{\mu_{22} + 2\mu_{11}}_{\mu}) d\varphi + 1, \qquad (2)$$

$$H^{1} := \frac{1}{2\pi} \int_{S^{1}} \cos(\varphi) \, \mu \, d\varphi \,, \qquad H^{2} := \frac{1}{2\pi} \int_{S^{1}} \sin(\varphi) \, \mu \, d\varphi \,.$$
 (3)

Let $P_{ij} = K_{ij} - \operatorname{tr} K g_{ij}$, define the angular momentum aspect j

$$J := \frac{1}{2\pi} \int_{r=R} \underbrace{\lim_{R \to \infty} 2P^r_{\varphi} \sqrt{\det g}}_{=:j} d\varphi \tag{4}$$

$$C^1 := -\frac{1}{2\pi} \int_{S^1} \sin(\varphi) \mathbf{j} \, d\varphi \,, \quad C^2 := \frac{1}{2\pi} \int_{S^1} \cos(\varphi) \mathbf{j} \, d\varphi \,. \quad (5)$$

► The Witten positivity proof [Witten '81] applies in space-dimension two [PTC, Herzlich '01; Cheng, Skenderis '05]

- ► The Witten positivity proof [Witten '81] applies in space-dimension two [PTC, Herzlich '01; Cheng, Skenderis '05]
- ▶ [PTC, Cong, Queau, Wutte, '24]: the fact that two-dimensional ALH manifolds with only one asymptotic end carry exactly one spin structure, but with more than one asymptotic region or with interior boundaries carry two, has a surprising consequence:

Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M,g) be a smooth, complete Riemannian manifold, possibly with black-hole boundary, and suppose that (M,g,K) is ALH and satisfies the dominant energy condition. Then

$$H^{0} + 1 \ge |J| + \sqrt{|\vec{C}|^{2} + |\vec{H}|^{2} + 2| \star (\vec{H} \wedge \vec{C})|}$$
 (6)

Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M,g) be a smooth, complete Riemannian manifold, possibly with black-hole boundary, and suppose that (M,g,K) is ALH and satisfies the dominant energy condition. Then

$$H^{0} + 1 \ge |J| + \sqrt{|\vec{C}|^{2} + |\vec{H}|^{2} + 2| \star (\vec{H} \wedge \vec{C})}|.$$
 (6)

If (M,g) carries a second spin structure (e.g., there is a black-hole boundary or another asymptotic end), then in addition to (6) it holds that

$$H^0 \ge |J|. \tag{7}$$

Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M,g) be a smooth, complete Riemannian manifold, possibly with black-hole boundary, and suppose that (M,g,K) is ALH and satisfies the dominant energy condition. Then

$$H^{0} + 1 \ge |J| + \sqrt{|\vec{C}|^{2} + |\vec{H}|^{2} + 2| \star (\vec{H} \wedge \vec{C})}|.$$
 (6)

If (M,g) carries a second spin structure (e.g., there is a black-hole boundary or another asymptotic end), then in addition to (6) it holds that

$$H^0 \ge |J|. \tag{7}$$

But: are these objects well defined?

Asymptotic Symmetries [Brown and Henneaux '86]

Acting with asymptotic symmetries

$$\varphi = f(\hat{\varphi}) - \frac{f''(\hat{\varphi})}{2\hat{r}^2}, \qquad \qquad r = \frac{\hat{r}}{f'(\hat{\varphi})}$$

with $f: S^1 \mapsto S^1$ any diffeomorphism, yields

$$g = \hat{b} + \hat{r}^{-2} \hat{\mu}_{ij} \hat{\theta}^i \hat{\theta}^j + O(\hat{r}^{-3}), \qquad \hat{b} = \frac{d\hat{r}^2}{\hat{r}^2} + \hat{r}^2 d\hat{\varphi}^2$$

Asymptotic Symmetries [Brown and Henneaux '86]

Acting with asymptotic symmetries

$$\varphi = f(\hat{\varphi}) - \frac{f''(\hat{\varphi})}{2\hat{r}^2}, \qquad \qquad r = \frac{\hat{r}}{f'(\hat{\varphi})}$$

with $f: S^1 \mapsto S^1$ any diffeomorphism, yields

$$g = \hat{b} + \hat{r}^{-2}\hat{\mu}_{ij}\hat{\theta}^{i}\hat{\theta}^{j} + O(\hat{r}^{-3}), \qquad \hat{b} = \frac{d\hat{r}^{2}}{\hat{r}^{2}} + \hat{r}^{2}d\hat{\varphi}^{2}$$

with new mass aspect function

$$\hat{\mu} = \mu(f(\hat{\varphi}))f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}), \quad S(f)(\hat{\varphi}) = \frac{f^{(3)}(\hat{\varphi})}{f'(\hat{\varphi})} - \frac{3}{2} \left(\frac{f''(\hat{\varphi})}{f'(\hat{\varphi})}\right)^2$$

We have

$$\hat{H} = \frac{1}{2\pi} \int_{S^1} \hat{\mu} d\hat{\varphi} = \frac{1}{2\pi} \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

with no clear relation to

$$H = \frac{1}{2\pi} \int_{S^1} \mu d\varphi$$

We have

$$\hat{H} = \frac{1}{2\pi} \int_{S^1} \hat{\mu} d\hat{\varphi} = \frac{1}{2\pi} \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

with no clear relation to

$$H = \frac{1}{2\pi} \int_{S^1} \mu d\varphi$$

Geometric invariant?

We have

$$\hat{H} = \frac{1}{2\pi} \int_{S^1} \hat{\mu} d\hat{\varphi} = \frac{1}{2\pi} \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

with no clear relation to

$$H = \frac{1}{2\pi} \int_{S^1} \mu d\varphi$$

Geometric invariant?

Theorem (Balog, Feher, Palla (1997))

For any μ , \hat{H} can be made arbitrarily large.

We have

$$\hat{H} = \frac{1}{2\pi} \int_{S^1} \hat{\mu} d\hat{\varphi} = \frac{1}{2\pi} \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

with no clear relation to

$$H = \frac{1}{2\pi} \int_{S^1} \mu d\varphi$$

Geometric invariant? transform μ to a constant?

Theorem (Balog, Feher, Palla (1997))

For any μ , \hat{H} can be made arbitrarily large.

We have

$$\hat{H} = \frac{1}{2\pi} \int_{S^1} \hat{\mu} d\hat{\varphi} = \frac{1}{2\pi} \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

with no clear relation to

$$H = \frac{1}{2\pi} \int_{S^1} \mu d\varphi$$

Geometric invariant? transform μ to a constant?

Theorem (Balog, Feher, Palla (1997))

There exist functions μ which cannot be mapped to a constant by an asymptotic symmetry.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_f H[\mu; f] \ge -1 \,.$$

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Definition

A mass aspect function μ is

1. good if $\underline{H}[\mu]$ is finite and attained;

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Definition

A mass aspect function μ is

- 1. good if $\underline{H}[\mu]$ is finite and attained;
- 2. bad if $H[\mu]$ is infinity;

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Definition

A mass aspect function μ is

- 1. good if $\underline{H}[\mu]$ is finite and attained;
- 2. bad if $\underline{H}[\mu]$ is infinity;
- 3. ugly if $\underline{H}[\mu]$ is finite but not attained.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1$$
.

Theorem (Balog, Feher, Palla (1997))

There exist bad functions and ugly functions.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Theorem (Balog, Feher, Palla (1997))

There exist bad functions and ugly functions. For ugly functions $H[\mu] = -1$.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1$$
.

Theorem (Balog, Feher, Palla (1997))

For good functions the infimum is attained on constants.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Theorem (Bañados (1999))

For every μ there exists a vacuum metric without singularities near the conformal boundary.

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1.$$

Theorem (Bañados (1999))

For every μ there exists a vacuum metric without singularities near the conformal boundary.

but elsewhere?

$$H[\mu; f] := \int_{S^1} \left(\mu(f(\hat{\varphi})) f'(\hat{\varphi})^2 - 2S(f)(\hat{\varphi}) \right) d\hat{\varphi}$$

Geometric invariant via minimisation ?

Schwartz's Lemma: if $\mu \ge -1$, then the infimum exists and satisfies

$$\underline{H}[\mu] := \inf_{f} H[\mu; f] \ge -1$$
.

Remark: "Bad" has many flavors, which complicates a lot all relevant arguments.

Positive energy theorem revisited

Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M,g) be a smooth, complete Riemannian manifold, possibly with black-hole boundary, and suppose that (M,g,K) is ALH and satisfies the dominant energy condition. Then the mass aspect function cannot be bad and

$$\underline{H}^{0} + 1 \ge |\underline{J}| + \sqrt{|\underline{\vec{C}}|^{2} + |\underline{\vec{H}}|^{2} + 2| \star (\underline{\vec{H}} \wedge \underline{\vec{C}})}|. \tag{8}$$

Positive energy theorem revisited

Theorem (PTC, Cong, Queau, Wutte, '24)

Let (M,g) be a smooth, complete Riemannian manifold, possibly with black-hole boundary, and suppose that (M,g,K) is ALH and satisfies the dominant energy condition. Then the mass aspect function cannot be bad and

$$\underline{H}^{0} + 1 \ge |\underline{J}| + \sqrt{|\underline{\vec{C}}|^{2} + |\underline{\vec{H}}|^{2} + 2| \star (\underline{\vec{H}} \wedge \underline{\vec{C}})|}. \tag{8}$$

If (M,g) carries a second spin structure (e.g., there is a black-hole boundary or another asymptotic end), then in addition to (8) it holds that

$$\underline{H}^0 \ge |\underline{J}|. \tag{9}$$

1. Mass in two dimensions with a negative cosmological constant is a mess in general.

- 1. Mass in two dimensions with a negative cosmological constant is a mess in general.
- 2. However, under physically reasonable conditions it is bounded from below, and satisfies satisfactory inequalities,

- 1. Mass in two dimensions with a negative cosmological constant is a mess in general.
- 2. However, under physically reasonable conditions it is bounded from below, and satisfies satisfactory inequalities,
- 3. with the mass aspect can be mapped to a constant by an asymptotic symmetry

- 1. Mass in two dimensions with a negative cosmological constant is a mess in general.
- 2. However, under physically reasonable conditions it is bounded from below, and satisfies satisfactory inequalities,
- with the mass aspect can be mapped to a constant by an asymptotic symmetry
- 4. *unless* we are in the ugly case:

$$\underline{H} = -1$$
 and not AdS.

- 1. Mass in two dimensions with a negative cosmological constant is a mess in general.
- 2. However, under physically reasonable conditions it is bounded from below, and satisfies satisfactory inequalities,
- 3. with the mass aspect can be mapped to a constant by an asymptotic symmetry
- 4. *unless* we are in the ugly case:

 $\underline{H} = -1$ and not AdS.

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with an ugly mass aspect function which are smooth except for one conical point.

Mass gap?

all good mass aspect functions are realised by

- 1. hyperbolic space (m = -1),
- 2. together with the BTZ black holes $(m \in (0, \infty))$, or
- 3. by a single conical singularity $(m \in (-1,0))$

Mass gap?

all good mass aspect functions are realised by

- 1. hyperbolic space (m = -1),
- 2. together with the BTZ black holes $(m \in (0, \infty))$, or
- 3. by a single conical singularity $(m \in (-1,0))$

static, smooth, vacuum, ALH, complete: there is a mass gap

$$m \not\in (-1,0)$$

No mass gap in general

Recall the scalar constraint equation

$$R = \rho + 2\Lambda + |K|^2 - (\operatorname{tr} K)^2,$$

where ρ is the matter density, and Λ is the cosmological constant, here normalised to -1.

No mass gap in general

Recall the scalar constraint equation

$$R = \rho + 2\Lambda + |K|^2 - (\operatorname{tr} K)^2,$$

where ρ is the matter density, and Λ is the cosmological constant, here normalised to -1.

For metrics of the form

$$g = f^{-1}dr^2 + r^2d\varphi^2, (10)$$

with trK = 0 one has

$$H = -1 + \frac{1}{2\pi} \int_{r_0}^{\infty} \int_{S^1} \left(2\rho + |K|^2 + \frac{1}{2r^2 f^2} \left(\frac{\partial f}{\partial \varphi} \right)^2 \right) r \, dr \, d\varphi$$
 (11)

(boundaryless case).

Penrose inequality

Recall the scalar constraint equation

$$R = \rho + 2\Lambda + |K|^2 - (\operatorname{tr} K)^2,$$

where ρ is the matter density, and Λ is the cosmological constant, here normalised to -1.

For metrics of the form

$$g = f^{-1}dr^2 + r^2d\varphi^2, (10)$$

with tr K = 0 one has

$$H = \frac{r_0^2}{12\pi} + \frac{1}{2\pi} \int_{r_0}^{\infty} \int_{S^1} \left(2\rho + |K|^2 + \frac{1}{2r^2 f^2} \left(\frac{\partial f}{\partial \varphi} \right)^2 \right) r \, dr \, d\varphi$$
 (11)

(black hole boundary with length r_0).

Gluing of initial data metrics

Gluing of initial data metrics

what is the mass of the glued metric?

Gluing of initial data metrics

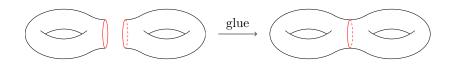
what is the mass of the glued metric?

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with an ugly mass aspect function which are smooth except for one conical point.

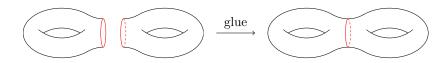
Gluing Theorems in $n \ge 3$

[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]



Gluing Theorems in $n \ge 3$

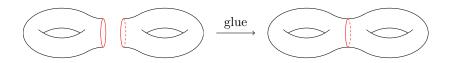
[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]



▶ Key step of localised gluing: deformation of initial data set in ϵ half-balls such that, within a half-ball of radius ϵ , the metric becomes manifestly hyperbolic

Gluing Theorems in $n \ge 3$

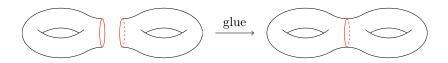
[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]



- ▶ Key step of localised gluing: deformation of initial data set in ϵ half-balls such that, within a half-ball of radius ϵ , the metric becomes manifestly hyperbolic
- When n = 2, all solutions to the vacuum time-symmetric constraint equations are locally isometric

Gluing Theorems in $n \ge 3$

[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]

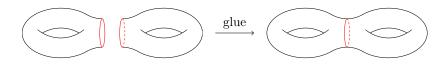


- ▶ Key step of localised gluing: deformation of initial data set in ϵ half-balls such that, within a half-ball of radius ϵ , the metric becomes manifestly hyperbolic
- When n = 2, all solutions to the vacuum time-symmetric constraint equations are locally isometric
- ▶ Gluing is simple in n = 2

Gluing $n \ge 3$

Gluing Theorems in $n \ge 3$

[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]



- ▶ Key step of localised gluing: deformation of initial data set in ϵ half-balls such that, within a half-ball of radius ϵ , the metric becomes manifestly hyperbolic
- When n = 2, all solutions to the vacuum time-symmetric constraint equations are locally isometric
- ▶ Gluing is simple in n = 2
- Mass is not

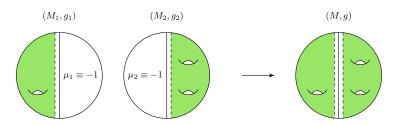
1. Start with an ALH metric with constant scalar curvature near the boundary at infinity and mass aspect function $\mu(\varphi)$

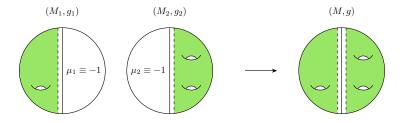
- 1. Start with an ALH metric with constant scalar curvature near the boundary at infinity and mass aspect function $\mu(\varphi)$
- 2. Pick a point p on the conformal boundary

- 1. Start with an ALH metric with constant scalar curvature near the boundary at infinity and mass aspect function $\mu(\varphi)$
- 2. Pick a point p on the conformal boundary
- 3. Find a diffeomorphism of S^1 such that $\mu = -1$ near p

- 1. Start with an ALH metric with constant scalar curvature near the boundary at infinity and mass aspect function $\mu(\varphi)$
- 2. Pick a point p on the conformal boundary
- 3. Find a diffeomorphism of S^1 such that $\mu = -1$ near p
- 4. Blow-up a small neighborhood of p using boosts (isometries of hyperbolic space)

- 1. Start with an ALH metric with constant scalar curvature near the boundary at infinity and mass aspect function $\mu(\varphi)$
- 2. Pick a point p on the conformal boundary
- 3. Find a diffeomorphism of S^1 such that $\mu = -1$ near p
- 4. Blow-up a small neighborhood of *p* using boosts (isometries of hyperbolic space)
- 5. Cut and glue \Rightarrow metric extends smoothly across gluing surface



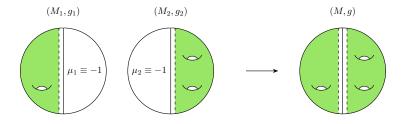


What is the mass of the resulting manifold?

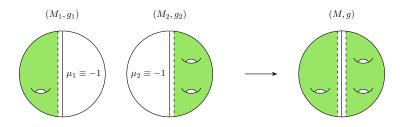
Theorem (Chruściel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension n=2 with constant scalar curvature we have: If the initial masses m_1 and m_2 are positive, then the glued manifold has mass m>0 equal to

$$\cosh(\sqrt{m}\pi) = 2\omega_1\omega_2\cosh(\sqrt{m_1}\pi)\cosh(\sqrt{m_2}\pi) - \cosh(\sqrt{m_1}\pi - \sqrt{m_2}\pi)$$
 with gluing parameters $\omega_1 > 1$, $\omega_2 > 1$.

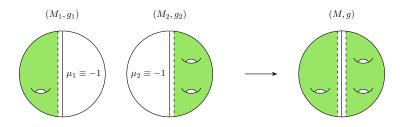


Idea of the proof: leverage [Balog, Feher, Palla 1997]



Idea of the proof: leverage [Balog, Feher, Palla 1997]

They classified functions $\mu: S^1 \to \mathbb{R}$ up to transformations $\mu \to \bar{\mu} = (f')^2 \, \mu \circ f - 2S(f)$ where $f \in Diff^+(S^1)$



Idea of the proof: leverage [Balog, Feher, Palla 1997]

- They classified functions $\mu: S^1 \to \mathbb{R}$ up to transformations $\mu \to \bar{\mu} = (f')^2 \, \mu \circ f 2S(f)$ where $f \in Diff^+(S^1)$
- Classifying μ turns out to be equivalent to classifying $Diff^+(S^1)$ -inequivalent solutions to the "Hill equation":

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0.$$

Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with $\varphi \in \mathbb{R}$, where $\mu(\varphi)$ is 2π -periodic:

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0.$$

Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with $\varphi \in \mathbb{R}$, where $\mu(\varphi)$ is 2π -periodic:

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0.$$

The point is that under changes $\varphi \mapsto \bar{\varphi} = f(\varphi)$ the function

$$\bar{\psi}(\varphi) := \frac{\psi(f(\varphi))}{\sqrt{f'(\varphi)}}$$

satisfies again a Hill equation

$$\frac{d^2\bar{\psi}}{d^2\varphi} - \frac{\bar{\mu}}{4}\bar{\psi} = 0, \text{ with } \bar{\mu} = (f')^2 \mu \circ f - 2S(f).$$

Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with $\varphi \in \mathbb{R}$, where $\mu(\varphi)$ is 2π -periodic:

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0.$$

The point is that under changes $\varphi \mapsto \bar{\varphi} = f(\varphi)$ the function

$$\bar{\psi}(\varphi) := \frac{\psi(f(\varphi))}{\sqrt{f'(\varphi)}}$$

satisfies again a Hill equation

$$\left| \frac{d^2 \bar{\psi}}{d^2 \varphi} - \frac{\bar{\mu}}{4} \bar{\psi} = 0, \text{ with } \bar{\mu} = (f')^2 \, \mu \circ f - 2S(f). \right|$$

The classification of the functions μ up to the transformation $\mu \mapsto \bar{\mu}$ can be derived from the invariants of the Hill equation.

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0 \,, \quad \mu \text{ is } 2\pi\text{-periodic and } \quad \varphi \in \mathbb{R}.$$

1. Number of zeros of ψ .

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0 \,, \quad \mu \text{ is } 2\pi\text{-periodic and } \quad \varphi \in \mathbb{R}.$$

- 1. Number of zeros of ψ .
- 2. Monodromy matrix: Let $\Psi:=(\psi_1,\psi_2)$ be a basis of solutions. Periodicity of μ implies that

$$\Psi(2\pi + \varphi) = (\psi_1(2\pi + \varphi), \psi_2(2\pi + \varphi))$$

is also a basis of solutions. Hence there exists a matrix M, called monodromy matrix, such that

$$\Psi(2\pi + \varphi) = \mathbf{M}\Psi(\varphi).$$

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0 \,, \quad \mu \text{ is } 2\pi\text{-periodic and } \quad \varphi \in \mathbb{R}.$$

- 1. Number of zeros of ψ .
- 2. Monodromy matrix: Let $\Psi := (\psi_1, \psi_2)$ be a basis of solutions. Periodicity of μ implies that

$$\Psi(2\pi + \varphi) = (\psi_1(2\pi + \varphi), \psi_2(2\pi + \varphi))$$

is also a basis of solutions. Hence there exists a matrix M, called monodromy matrix, such that

$$\Psi(2\pi + \varphi) = \mathbf{M}\Psi(\varphi).$$

Under a change of basis $\Psi \mapsto A\Psi$, the matrix **M** changes as

$$M \mapsto AMA^{-1}$$
.

$$\frac{d^2\psi}{d^2\varphi} - \frac{\mu}{4}\psi = 0 \,, \quad \mu \text{ is } 2\pi\text{-periodic and } \quad \varphi \in \mathbb{R}.$$

- 1. Number of zeros of ψ .
- 2. Monodromy matrix: Let $\Psi:=(\psi_1,\psi_2)$ be a basis of solutions. Periodicity of μ implies that

$$\Psi(2\pi + \varphi) = (\psi_1(2\pi + \varphi), \psi_2(2\pi + \varphi))$$

is also a basis of solutions. Hence there exists a matrix M, called monodromy matrix, such that

$$\Psi(2\pi + \varphi) = \mathbf{M}\Psi(\varphi).$$

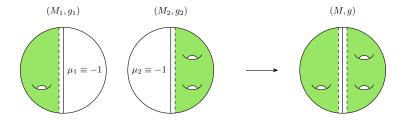
Under a change of basis $\Psi \mapsto A\Psi$, the matrix M changes as

$$M \mapsto AMA^{-1}$$
.

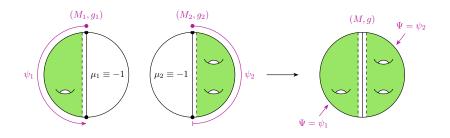
Trace of M is an invariant.

Back to our problem

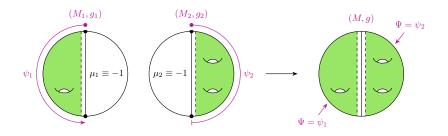
Gluing n = 2, constant negative scalar curvature



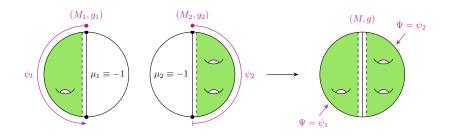
What is the mass of the resulting manifold?



1. Start with (M_1, g_1) , together with μ_1 and associated (Ψ_1, \mathbf{M}_1) (M_2, g_2) , together with μ_2 and associated (Ψ_2, \mathbf{M}_2)



- 1. Start with (M_1, g_1) , together with μ_1 and associated (Ψ_1, \mathbf{M}_1) (M_2, g_2) , together with μ_2 and associated (Ψ_2, \mathbf{M}_2)
- 2. Glue the manifolds and associated Hill's functions Ψ_1 and Ψ_2 \Rightarrow (Ψ, M)



A calculation gives:

$$\mathbf{M} = -\mathbf{M}_1\mathbf{M}_2$$
 .



A calculation gives:

$$\mathbf{M} = -\mathbf{M}_1\mathbf{M}_2$$
.

Together with the zeros of the glued Hill functions Ψ this gives the mass of glued manifold by employing the classification result by [Balog, Feher, Palla '97].

Example result

Theorem (Chruściel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension n=2 with constant scalar curvature we have: If the initial masses m_1 and m_2 are positive, then the glued manifold has mass m_1 determined from the equation

$$\cosh(\sqrt{m\pi}) = 2\omega_1\omega_2 \cosh(\sqrt{m_1}\pi) \cosh(\sqrt{m_2}\pi) - \cosh(\sqrt{m_1}\pi - \sqrt{m_2}\pi)$$
 with gluing parameters $\omega_1 > 1$, $\omega_2 > 1$

An already mentioned application

Theorem (Chruściel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete asymptotically locally hyperbolic metrics with constant scalar curvature which are smooth except for at most one conical singularity.

An already mentioned application

Theorem (Chruściel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete asymptotically locally hyperbolic metrics with constant scalar curvature which are smooth except for at most one conical singularity.

Recall: constant scalar curvature metrics provide vacuum time symmetric general relativistic initial data.

An already mentioned application

Theorem (Chruściel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete asymptotically locally hyperbolic metrics with constant scalar curvature which are smooth except for at most one conical singularity.

Recall: constant scalar curvature metrics provide vacuum time symmetric general relativistic initial data.

Proof: by gluing constant $\mu=m$ solutions, calculating the monodromy, and checking that one exhausts all cases of the classification by Balog, Feher and Palla.