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Why bother?

Why (2+1)-dim. general relativity with Λ < 0 interesting?

▶ AdS3/CFT2

▶ Interesting solutions (e.g. BTZ black holes)

▶ Mass is interesting
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1. Solutions of Interest

2. Mass

3. Gluings of Solutions
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Solutions of Interest
Peculiarities of 2+1

▶ All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rµνρσ = Λ(gµρgνσ − gµσgνρ) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

▶ particle-like solutions and their quantisation with Λ = 0:
Staruszkiewicz (1963), Deser-t’Hooft (1984), t’Hooft (1993)

▶ Black hole solutions for Λ < 0: Bañados, Teitelboim, Zanelli
(1992)

▶ unusual properties of energy with Λ = 0: Ashtekar and
Varadarajan (1994)

▶ what about energy with Λ < 0?
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Solutions of Interest
Peculiarities of 2+1

▶ All vacuum solutions to Einstein gravity at fixed cosmological
constant are locally isometric

Rµνρσ = Λ(gµρgνσ − gµσgνρ) . (1)

(Our analysis only requires asymptotically vacuum in any case,
so this is only relevant asymptotically.)

Even in vacuum, global properties allow for interesting solutions:

▶ particle-like solutions and their quantisation with Λ = 0:
Staruszkiewicz (1963), Deser-t’Hooft (1984), t’Hooft (1993)

▶ Black hole solutions for Λ < 0: Bañados, Teitelboim, Zanelli
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Solutions of Interest
Known static solutions

1-parameter family of vacuum solutions [Bañados, Teitelboim, Zanelli, ’92]

g2+1 = −(r2 −m)dt2 +
dr2

r2 −m
+ r2dφ2

▶ m > 0: BTZ black hole

▶ m < 0: metric has one conical singularity unless m = −1

▶ m = −1: AdS3

g2+1 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dφ2︸ ︷︷ ︸

2-dim hyperbolic space

▶ many interesting quotients of 2-dim hyperbolic space are
possible: compact, or with several locally asymptotically
hyperbolic ends, or with cusps, or ...
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g2+1 = −(r2 −m)dt2 +
dr2

r2 −m
+ r2dφ2

▶ m > 0: BTZ black hole

▶ m < 0: metric has one conical singularity unless m = −1

▶ m = −1: AdS3

g2+1 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dφ2︸ ︷︷ ︸

2-dim hyperbolic space

▶ many interesting quotients of 2-dim hyperbolic space are
possible: compact, or with several locally asymptotically
hyperbolic ends, or with cusps, or ...



Hyperbolic Mass in
2 + 1 Dimensions

Piotr T. Chruściel
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Mass in 2 space Dimensions

▶ It suffices to work with initial data (M, g ,K )

▶ vacuum & time-symmetric Kij = 0 ⇒ R(g) = −2

▶ To define mass: consider metrics which approach

b =
dr2

r2
+ r2dφ2

with φ ∈ [0, 2π] at large distances:

Definition

A metric is called asymptotically locally hyperbolic if

g = b + r−2µijθ
iθj + O(r−3)

where the error terms are to be understood as coefficients in a
b-ON coframe

▶ the tensor field µij = µij(φ) is called the mass aspect tensor
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Mass in 2 space Dimensions

▶ It suffices to work with initial data (M, g ,K )
▶ vacuum & time-symmetric Kij = 0 ⇒ R(g) = −2

▶ To define mass: consider metrics which approach

b =
dr2

r2
+ r2dφ2

with φ ∈ [0, 2π] at large distances:

Definition

A metric is called asymptotically locally hyperbolic if

g = b + r−2µijθ
iθj + O(r−3)

where the error terms are to be understood as coefficients in a
b-ON coframe

▶ the tensor field µij = µij(φ) is called the mass aspect tensor



Hyperbolic Mass in
2 + 1 Dimensions

Piotr T. Chruściel
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Mass in 2 Dimensions
Definition continued

▶ Write µ = µijθ
iθj , where

θ2 = r−1dr , θ1 = rdφ

▶ The Hamiltonian mass à la Kijowski-Tulczyjew reads

H =
1

2π

∫
∂M

(µ22 + 2µ11) dφ =:
1

2π

∫
∂M

µ dφ

where µ is called the mass aspect function

▶ Example: g = dr2

r2−m + r2dφ2 , H = m
▶ Note AdS has mass m = −1 ...

▶ Is H well defined?

▶ Is H bounded from below by −1?
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Mass in 2 Dimensions
Definition continued

▶ Write µ = µijθ
iθj , where

θ2 = r−1dr , θ1 = rdφ
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Hamiltonian charges and Witten’s-type positivity proof

H0 := H + 1 =
1

2π

∫
S1

(µ22 + 2µ11︸ ︷︷ ︸
µ

)dφ+ 1 , (2)

H1 :=
1

2π

∫
S1

cos(φ)µ dφ , H2 :=
1

2π

∫
S1

sin(φ)µ dφ . (3)

Let Pij = Kij − trKgij , define the angular momentum aspect j

J :=
1

2π

∫
r=R

lim
R→∞

2P r
φ

√
det g︸ ︷︷ ︸

=:j

dφ (4)

C 1 := − 1

2π

∫
S1

sin(φ) j dφ , C 2 :=
1

2π

∫
S1

cos(φ) j dφ . (5)
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Mass in 2 Dimensions

▶ The Witten positivity proof [Witten ’81] applies in
space-dimension two [PTC, Herzlich ’01; Cheng, Skenderis ’05]

▶ [PTC, Cong, Queau, Wutte, ’24]: the fact that
two-dimensional ALH manifolds with only one asymptotic end
carry exactly one spin structure, but with more than one
asymptotic region or with interior boundaries carry two, has a
surprising consequence:
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Mass in 2 Dimensions

Theorem (PTC, Cong, Queau, Wutte, ’24)

Let (M, g) be a smooth, complete Riemannian manifold, possibly
with black-hole boundary, and suppose that (M, g ,K ) is ALH and
satisfies the dominant energy condition. Then

H0 + 1 ≥ |J|+
√

|C⃗ |2 + |H⃗|2 + 2| ⋆ (H⃗ ∧ C⃗ )| . (6)

If (M, g) carries a second spin structure (e.g., there is a black-hole
boundary or another asymptotic end), then in addition to (6) it
holds that

H0 ≥ |J| . (7)

But: are these objects well defined?
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Mass in 2 Dimensions
Asymptotic Symmetries [Brown and Henneaux ’86]

Acting with asymptotic symmetries

φ = f (φ̂)− f ′′(φ̂)

2r̂2
, r =

r̂

f ′(φ̂)

with f : S1 7→ S1 any diffeomorphism, yields

g = b̂ + r̂−2µ̂ij θ̂
i θ̂j + O(r̂−3) , b̂ =

dr̂2

r̂2
+ r̂2dφ̂2

with new mass aspect function

µ̂ = µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂) , S(f )(φ̂) = f (3)(φ̂)
f ′(φ̂) − 3

2

(
f ′′(φ̂)
f ′(φ̂)

)2
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Mass in 2 Dimensions

We have

Ĥ =
1

2π

∫
S1

µ̂dφ̂ =
1

2π

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

with no clear relation to

H =
1

2π

∫
S1

µdφ

Geometric invariant?

transform µ to a constant?
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∫
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∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

with no clear relation to

H =
1

2π

∫
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µdφ

Geometric invariant?

transform µ to a constant?

Theorem (Balog, Feher, Palla (1997))

For any µ, Ĥ can be made arbitrarily large.
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Mass in 2 Dimensions

We have

Ĥ =
1

2π

∫
S1

µ̂dφ̂ =
1

2π

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

with no clear relation to

H =
1

2π

∫
S1

µdφ

Geometric invariant? transform µ to a constant?

Theorem (Balog, Feher, Palla (1997))

There exist functions µ which cannot be mapped to a constant by
an asymptotic symmetry.
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Mass in 2 Dimensions

H[µ; f ] :=

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

but elsewhere?
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Mass in 2 Dimensions

H[µ; f ] :=
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S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

Definition

A mass aspect function µ is

1. good if H[µ] is finite and attained;

2. bad if H[µ] is - infinity;
3. ugly if H[µ] is finite but not attained.

but elsewhere?
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Mass in 2 Dimensions

H[µ; f ] :=

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

Theorem (Balog, Feher, Palla (1997))

There exist bad functions and ugly functions.
For ugly functions H[µ] = −1.

but elsewhere?
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Mass in 2 Dimensions

H[µ; f ] :=

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

Theorem (Balog, Feher, Palla (1997))

For good functions the infimum is attained on constants.

but elsewhere?
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Mass in 2 Dimensions

H[µ; f ] :=

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

Theorem (Bañados (1999))

For every µ there exists a vacuum metric without singularities near
the conformal boundary.

but elsewhere?
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Mass in 2 Dimensions

H[µ; f ] :=

∫
S1

(
µ(f (φ̂))f ′(φ̂)2 − 2S(f )(φ̂)

)
dφ̂

▶ Geometric invariant via minimisation ?

Schwartz’s Lemma: if µ ≥ −1, then the infimum exists and
satisfies

H[µ] := inf
f
H[µ; f ] ≥ −1 .

but elsewhere?

Remark: “Bad” has many flavors, which complicates a lot all
relevant arguments.
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Positive energy theorem revisited

Theorem (PTC, Cong, Queau, Wutte, ’24)

Let (M, g) be a smooth, complete Riemannian manifold, possibly
with black-hole boundary, and suppose that (M, g ,K ) is ALH and
satisfies the dominant energy condition. Then the mass aspect
function cannot be bad and

H0 + 1 ≥ |J|+
√

|C⃗ |2 + |H⃗|2 + 2| ⋆ (H⃗ ∧ C⃗ )| . (8)

If (M, g) carries a second spin structure (e.g., there is a black-hole
boundary or another asymptotic end), then in addition to (8) it
holds that

H0 ≥ |J| . (9)
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Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,

3. with the mass aspect can be mapped to a constant by an
asymptotic symmetry

4. unless we are in the ugly case:

H = −1 and not AdS.

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with
an ugly mass aspect function which are smooth except for one
conical point.
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Take home message

1. Mass in two dimensions with a negative cosmological constant
is a mess in general.

2. However, under physically reasonable conditions it is bounded
from below, and satisfies satisfactory inequalities,

3. with the mass aspect can be mapped to a constant by an
asymptotic symmetry

4. unless we are in the ugly case:

H = −1 and not AdS.

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with
an ugly mass aspect function which are smooth except for one
conical point.



Hyperbolic Mass in
2 + 1 Dimensions

Piotr T. Chruściel
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Mass gap?

all good mass aspect functions are realised by

1. hyperbolic space (m = −1),

2. together with the BTZ black holes (m ∈ (0,∞)), or

3. by a single conical singularity (m ∈ (−1, 0))

static, smooth, vacuum, ALH, complete: there is a mass gap

m ̸∈ (−1, 0)
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No mass gap in general

Recall the scalar constraint equation

R = ρ+ 2Λ + |K |2 − (trK )2 ,

where ρ is the matter density, and Λ is the cosmological constant,
here normalised to −1.

For metrics of the form

g = f −1dr2 + r2dφ2 , (10)

with trK = 0 one has
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No mass gap in general

Recall the scalar constraint equation

R = ρ+ 2Λ + |K |2 − (trK )2 ,

where ρ is the matter density, and Λ is the cosmological constant,
here normalised to −1.

For metrics of the form

g = f −1dr2 + r2dφ2 , (10)

with trK = 0 one has

H = −1 +
1

2π

∫ ∞

r0

∫
S1

(
2ρ+ |K |2 + 1

2r2f 2
( ∂f
∂φ

)2)
r dr dφ (11)

(boundaryless case).
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Penrose inequality

Recall the scalar constraint equation

R = ρ+ 2Λ + |K |2 − (trK )2 ,

where ρ is the matter density, and Λ is the cosmological constant,
here normalised to −1.

For metrics of the form

g = f −1dr2 + r2dφ2 , (10)

with trK = 0 one has

H = r20 +
1

2π

∫ ∞

r0

∫
S1

(
2ρ+ |K |2 + 1

2r2f 2
( ∂f
∂φ

)2)
r dr dφ (11)

(black hole boundary with length r0).
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Gluing of initial data metrics

what is the mass of the glued metric?

Theorem (PTC, Wutte arXiv:2411.07423)

There exist static conformally compact ALH vacuum metrics with
an ugly mass aspect function which are smooth except for one
conical point.
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Gluing n ≥ 3

Gluing Theorems in n ≥ 3
[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]

glue

▶ Key step of localised gluing: deformation of initial data set in
ϵ half-balls such that, within a half-ball of radius ϵ, the metric
becomes manifestly hyperbolic

▶ When n = 2, all solutions to the vacuum time-symmetric
constraint equations are locally isometric

▶ Gluing is simple in n = 2

▶ Mass is not
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Gluing n ≥ 3

Gluing Theorems in n ≥ 3
[Isenberg, Lee & Stavrov 2010 (conformal); PTC & Delay 2015 (localised)]

glue

▶ Key step of localised gluing: deformation of initial data set in
ϵ half-balls such that, within a half-ball of radius ϵ, the metric
becomes manifestly hyperbolic

▶ When n = 2, all solutions to the vacuum time-symmetric
constraint equations are locally isometric

▶ Gluing is simple in n = 2

▶ Mass is not



Hyperbolic Mass in
2 + 1 Dimensions

Piotr T. Chruściel
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Beijing Institute of

Mathematical
Sciences &

Centrum Fizyki
Teoretycznej PAN

Gluing n = 2, constant negative scalar curvature

1. Start with an ALH metric with constant scalar curvature near
the boundary at infinity and mass aspect function µ(φ)

2. Pick a point p on the conformal boundary

3. Find a diffeomorphism of S1 such that µ = −1 near p

4. Blow-up a small neighborhood of p using boosts (isometries
of hyperbolic space)

5. Cut and glue ⇒ metric extends smoothly across gluing surface

(M1, g1)

µ1 ≡ −1

(M2, g2)

µ2 ≡ −1

(M, g)
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Gluing n = 2, constant negative scalar curvature

(M1, g1)

µ1 ≡ −1

(M2, g2)

µ2 ≡ −1

(M, g)

What is the mass of the resulting manifold?
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Gluing n = 2

Theorem (Chruściel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension
n = 2 with constant scalar curvature we have: If the initial masses
m1 and m2 are positive, then the glued manifold has mass m > 0
equal to

cosh(
√
mπ) = 2ω1ω2 cosh(

√
m1π) cosh(

√
m2π)− cosh(

√
m1π −√

m2π)

with gluing parameters ω1 > 1, ω2 > 1.
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Gluing n = 2, constant negative scalar curvature

(M1, g1)

µ1 ≡ −1

(M2, g2)

µ2 ≡ −1

(M, g)

Idea of the proof: leverage [Balog, Feher, Palla 1997]

▶ They classified functions µ : S1 → R up to transformations
µ→ µ̄ = (f ′)2 µ ◦ f − 2S(f ) where f ∈ Diff +(S1)

▶ Classifying µ turns out to be equivalent to classifying
Diff +(S1)-inequivalent solutions to the “Hill equation”:

d2ψ

d2φ
− µ

4
ψ = 0 .
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Controlling mass: the trick (Balog, Feher, Palla)

Consider the Hill equation, with φ ∈ R, where µ(φ) is 2π-periodic:

d2ψ

d2φ
− µ

4
ψ = 0 .

The point is that under changes φ 7→ φ̄ = f (φ) the function

ψ̄(φ) :=
ψ(f

(
φ)

)√
f ′(φ)

satisfies again a Hill equation

d2ψ̄
d2φ

− µ̄
4 ψ̄ = 0 , with µ̄ = (f ′)2 µ ◦ f − 2S(f ) .

The classification of the functions µ up to the transformation
µ 7→ µ̄ can be derived from the invariants of the Hill equation.
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Invariants of the Hill equation
d2ψ

d2φ
− µ

4
ψ = 0 , µ is 2π-periodic and φ ∈ R.

1. Number of zeros of ψ.

2. Monodromy matrix: Let Ψ := (ψ1, ψ2) be a basis of solutions.
Periodicity of µ implies that

Ψ(2π + φ) =
(
ψ1(2π + φ), ψ2(2π + φ)

)
is also a basis of solutions. Hence there exists a matrix M,
called monodromy matrix, such that

Ψ(2π + φ) = MΨ(φ) .

Under a change of basis Ψ 7→ AΨ, the matrix M changes as

M 7→ AMA−1 .

Trace of M is an invariant.
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Back to our problem
Gluing n = 2, constant negative scalar curvature

(M1, g1)

µ1 ≡ −1

(M2, g2)

µ2 ≡ −1

(M, g)

What is the mass of the resulting manifold?
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Gluing n = 2

(M1, g1)

µ1 ≡ −1ψ1

(M2, g2)

µ2 ≡ −1 ψ2

(M, g)

Ψ = ψ1

Ψ = ψ2

1. Start with
(M1, g1), together with µ1 and associated (Ψ1,M1)
(M2, g2), together with µ2 and associated (Ψ2,M2)

2. Glue the manifolds and associated Hill’s functions Ψ1 and Ψ2

⇒ (Ψ,M)
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Gluing n = 2

(M1, g1)

µ1 ≡ −1ψ1

(M2, g2)

µ2 ≡ −1 ψ2

(M, g)

Ψ = ψ1

Ψ = ψ2

A calculation gives:
M = −M1M2 .

Together with the zeros of the glued Hill functions Ψ this gives the
mass of glued manifold by employing the classification result by
[Balog, Feher, Palla ’97].
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Example result

Theorem (Chruściel, Wutte, arXiv:2401.04048)

Given two asymptotically locally hyperbolic manifolds in dimension
n = 2 with constant scalar curvature we have: If the initial masses
m1 and m2 are positive, then the glued manifold has mass m
determined from the equation

cosh(
√
mπ) = 2ω1ω2 cosh(

√
m1π) cosh(

√
m2π)− cosh(

√
m1π −√

m2π)

with gluing parameters ω1 > 1, ω2 > 1
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An already mentioned application

Theorem (Chruściel, Wutte, arXiv:2401.04048)

All mass aspect functions can be realised by complete
asymptotically locally hyperbolic metrics with constant scalar
curvature which are smooth except for at most one conical
singularity.

Recall: constant scalar curvature metrics provide vacuum time
symmetric general relativistic initial data.

Proof: by gluing constant µ = m solutions, calculating the
monodromy, and checking that one exhausts all cases of the
classification by Balog, Feher and Palla.
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