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Summary back

• Why Hamiltonians?

• Singular Hamiltonian systems.

• Dirac’s vs. geometric (GNH) approach.

• A couple of examples:

• The Husain-Mehmood model.

• The Euclidean self-dual action for GR.

• Concluding remarks.
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Why Hamiltonians? back

• A frequent answer: they are a suitable starting point for quan-
tization. For instance, loop quantum gravity started as a pro-
gram to implement Dirac’s approach to quantization from a Ha-
miltonian description of GR in terms of SU(2) connections.

• They are also useful to understand the classical dynamics!

A problem
The correct implementation of the methods designed to
derive the Hamiltonian formulation for singular (a.k.a.
constrained) systems is harder than it seems.
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From Lagrangians to Hamiltonians back

The fiber derivative (a.k.a. “the definition of momenta”).

FL : TQ → T ∗Q : (q, v) 7→ (q,p) , q ∈ Q ,p ∈ T ∗
qQ .

p(w) :=
d

dt
L(q, v + tw)

∣∣∣
t=0

, v ,w ∈ TqQ .
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From Lagrangians to Hamiltonians back

The energy: E : TQ → R : (q, v) 7→ p(v)− L(q, v) .

On solutions to the Euler-Lagrange equations the energy is constant, i.e.

d

dt
E
(
q(t), q̇(t)

)
= 0, ∀t ∈ [t1, t2] .
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From Lagrangians to Hamiltonians back

Another way to get the dynamics:

• Define the Hamiltonian H : T ∗Q → R as H = E ◦ FL−1.

• Find the Hamiltonian vector field X s.t. ıXΩ = dH.

• Get the integral curves of X and project them onto Q.
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Singular Hamiltonian systems back

• Those for which FL is not a diffeo.

• They can be studied by the traditional Dirac method or the geo-
metric approach proposed by Gotay, Nester and Hinds (GNH).

• A crucial step in Dirac’s method: solve for the multipliers in-
troduced to define the total Hamiltonian. Their arbitrary parts
give linear combinations of primary constraints which are
first class. This is a time consuming task.

• The corresponding step in GNH is the resolution of the equa-
tions for the components of the Hamiltonian vector fields
and checking consistency of the dynamics. Also a time con-
suming task.
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Comparing Dirac and GNH back

• Dirac’s method uses the whole phase space T ∗Q, whereas the
GNH method is designed to work on the primary constraint
submanifold M0.

• Dirac uses the canonical symplectic form, whereas GNH em-
ploys its pullback onto M0, which is often degenerate.

• Dirac’s total Hamiltonian HT is defined on the whole phase
space, whereas the Hamiltonian in the GNH approach is defined
only on the primary constraint submanifold.

• As a first approximation one can say that Dirac’s method is
geared towards quantization whereas GNH is better suited
to study the classical dynamics but, in fact, both methods
can be helpful for these goals.
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The Husain-Mehmood model back

V. Husain & H. Mehmood, PRD 109 (2024) 064016, arXiv:2312.06079

J.F.B.G., B. D́ıaz, J. Margalef-Bentabol & E.J.S. Villaseñor, arXiv:2507.12184

• Let Σ be a closed, orientable, 3-manifold (therefore parallelizable) and a
4-manifold M = R× Σ. Let us take the action

SHM(Φ,A) = 1
2

∫
[τ1,τ2]×Σ

〈[dAΦ ∧. dAΦ] ∧. FA〉

• The basic fields are g-valued forms Φ ∈ Ω0(M, g) and A ∈ Ω1(M, g).
The symbol 〈· ∧. ·〉 combines the exterior product of forms and a suitably
g-invariant symmetric bilinear form. Also

FA := dA +
1

2
[A ∧. A]

dAB := dB + [A ∧. B]

The symbol [· ∧. ·] combines the Lie bracket and the exterior product.
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The Husain-Mehmood model back

Comments:

• This is closely related to the Husain-Kuchǎr model. Its Ha-
miltonian analysis is quite interesting.

• In principle g may be any finite-dimensional Lie algebra. In the
following I will take g = su(2), and use its (non-degenerate)
Cartan-Killing bilinear form

• The field equations are:

[[FA ∧. Φ] ∧. FA] = 0

dA[[FA ∧. Φ] ∧. Φ] = 0

• A good way to understand and disentangle the dynamics of this
system is through its Hamiltonian formulation.
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The HM model (Lagrangian) back

• The configuration space for this field theory is

Q = Ω0(Σ, g)× Ω1(Σ, g)× Ω0(Σ, g)

with points (φ,A, a) ∈ Q (two g-valued scalars and a 1-form).

• The Lagrangian is a real function L : TQ → R

L(vq)=

∫
Σ

(
〈[vφ ∧. dAφ] ∧. FA〉+

1

2
〈vA ∧. [dAφ ∧. dAφ]〉+〈a ∧. dA[[FA ∧. φ] ∧. φ]〉

)
TQ is trivial. We denote vq :=

(
(φ,A, a), (vφ, vA, va)

)
∈ TQ.

The definitions of dA and FA are the expected ones.
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The HM model (Hamiltonian) back

• The phase space T ∗Q: with points pq := ((φ,A, a), (pφ,pA,pa)).

• Momenta (covectors acting on wq :=
(
(φ,A, a), (wφ,wA,wa)

)
∈ TQ)

pφ(wq) =

∫
Σ
〈wφ ∧. [dAφ ∧. FA]〉 ,

pA(wq) =

∫
Σ

1

2
〈wA ∧. [dAφ ∧. dAφ]〉 ,

pa(wq) = 0 .

• These conditions define the primary constraint “submanifold” M0

where the dynamics unfolds.

• The Hamiltonian H : M0 → R is

H(pq) =

∫
Σ
〈a ∧. dA[φ ∧. [FA ∧. φ]]〉
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The HM model (Hamiltonian) back

• Vector fields Y = (Yφ,YA,Ya,Ypφ,YpA,Ypa) ∈ X(T ∗Q) , where

Yφ : T ∗Q → Ω0(Σ, g) , Ypφ : T ∗Q → Ω0(Σ, g)∗ ,

YA : T ∗Q → Ω1(Σ, g) , YpA : T ∗Q → Ω1(Σ, g)∗ ,

Ya : T ∗Q → Ω0(Σ, g) , Ypa : T ∗Q → Ω0(Σ, g)∗ ,

Ypφ, YpA, Ypa are functions in T ∗Q; “dual” because acting, respectively,
on objects such as Yφ, YA, and Ya they give real functions in phase space.

• For vector fields tangent to M0 we have

Ypφ(·)=

∫
Σ

(
〈[· ∧. dAYφ] ∧. FA〉+〈[· ∧. [YA ∧. φ]] ∧. FA〉+〈[· ∧. dAφ] ∧. dAYA〉

)
YpA(·)=

∫
Σ

(
〈· ∧. [dAYφ ∧. dAφ]〉+〈· ∧. [[YA ∧. φ] ∧. dAφ]〉

)
Ypa (·)= 0
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The HM model (Hamiltonian) back

• The pullback of dH acting on a vector field Y0 ∈ X(M0) is

dH(Y0) =

∫
Σ

(
〈Yφ ∧.

(
[dAa ∧. [FA ∧. φ]] + [FA ∧. [dAa ∧. φ]]

)
〉

+ 〈YA ∧.
(
[[φ ∧. a] ∧. [FA ∧. φ]]− [dAφ ∧. [dAa ∧. φ]]

+ [φ ∧. [[a ∧. φ] ∧. FA]] + [φ ∧. [dAa ∧. dAφ]]
)
〉

+〈Ya ∧. dA[φ ∧. [FA ∧. φ]]〉
)

• The pullback of Ω acting on a vector field X0,Y0 ∈ X(M0) is

Ω(X0,Y0) =

∫
Σ

(
〈Yφ ∧. ([XA ∧. [FA ∧. φ]] + [FA ∧. [XA ∧. φ]])〉

+ 〈YA ∧. ([φ ∧. [XA ∧. dAφ]]− [dAφ ∧. [XA ∧. φ]]

− [φ ∧. [Xφ ∧. FA]] + [Xφ ∧. [FA ∧. φ]])〉
)
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The HM model (Hamiltonian) back
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The HM model (Hamiltonian) back
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The HM model (Hamiltonian) back

Solving ıX0Ω = dH for X0

• Equivalent to solving dH(Y0) = Ω(X0,Y0) for all Y0 ∈ X(M0). Easy
to do by comparing term by term the expressions in the previous slide.

• We find secondary constraints:

dA[φ ∧. [FA ∧. φ]] = 0

• and equations for the components of the Hamiltonian vector field X0

[(XA − dAa) ∧. [FA ∧. φ]] + [FA ∧. [(XA − dAa) ∧. φ]] = 0

[(Xφ − [φ ∧. a]) ∧. [FA ∧. φ]]− [dAφ ∧. [(XA − dAa) ∧. φ]]

−[φ ∧. [(Xφ − [φ ∧. a]) ∧. FA]] + [φ ∧. [(XA − dAa) ∧. dAφ]] = 0
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The HM model (Hamiltonian) back

• The vector fields found by solving the previous equation must be tangent
to the set defined by the secondary constraints.

Tangency condition

dA[Xφ ∧. [FA∧. φ]] +dA[φ ∧. [dAXA∧. φ]]

+dA[φ ∧. [FA ∧. Xφ]] + [XA∧. [φ ∧. [FA ∧. φ]]] = 0

Comments:

• Most of the work goes into solving the equations for X0 and checking
the tangency condition!

• Although the equations for X0 are linear it is quite difficult to find their
solutions in a usable form (a surprisingly hard and interesting problem!)

• It is crucial to understand the behavior of these solutions when the
secondary constraints hold.
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The HM model (Hamiltonian) back

• Assuming that dAφ is a coframe, the components of the Hamil-
tonian vector field X0 are:

Xφ = Lξφ+ [φ ∧. (a− ξ
¬
A)] ,

XA = LξA + dA(a− ξ
¬
A) + N

(
3d〈φ ∧. φ〉φ− 2〈φ ∧. φ〉dAφ

)
,

Xa arbitrary .

where

• ξ ∈ X(Σ) is an arbitrary vector field.
• N is an arbitrary smooth function on T ∗Q.

• We have:

• Diffeos on Σ generated by ξ.

• Internal SU(2) transformations with gauge parameter a− ξ
¬
A.

• An additional gauge symmetry associated with the arbitrary N.
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The HM model (Hamiltonian) back

Comments:

• The tangency conditions hold on the submanifold defined
by the secondary constraints.

• The analysis has been performed under the hypothesis that the
dAφ define a coframe on Σ.

• The local gauge parameters ξ and a− ξ
¬
A are arbitrary.

• There are extra gauge transformations controlled by N. This
is similar to GR in Ashtekar variables, where there are spatial
diffeos, internal SU(2) transformations and the non-trivial dyna-
mics generated by the scalar constraint.
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The Euclidean self-dual action for GR back

J.F.B.G., M. Basquens & E.J.S. Villaseñor, PRD109 (2024) 064047, arXiv:2312.12947

• Basic fields: e ,ω ∈ Ω1(M, su(2)), α ∈ Ω1(M).

• α and e chosen so that α ⊗ α + 〈e ⊗ e〉 is a Euclidean metric. As a
consequence (α, e) defines a non-degenerate tetrad.

• Covariant exterior differential D:

De := de + [ω ∧. e]

Curvature 2-form:

F := dω +
1

2
[ω ∧. ω]

• The Euclidean self-dual action for General Relativity is

S(e,ω,α) :=

∫
[τ1,τ2]×Σ

(
1
2〈[e ∧. e] ∧. F〉 −α ∧ 〈e ∧. F〉

)
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The Euclidean self-dual action for GR back

• The first term is the Husain-Kuchǎr action.

• The action is invariant under the SU(2) gauge transformations:

δ1ω = DΛ
δ1α = 0 Λ ∈ Ω0(M, su(2))
δ1 e = [e ∧. Λ]

• The action is also invariant under the extra SU(2) transformations

δ2ω = 0
δ2α = 〈Υ ∧. e〉 Υ ∈ Ω0(M, su(2))
δ2e = −Υα+ [e ∧. Υ]

• δ1 and δ2 are independent but do not commute. Some linear combi-
nations of them do commute. Full symmetry: SU(2)⊗ SU(2).
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The Euclidean self-dual action for GR back

• The field equations are:

D(α ∧ e) + [e ∧. De] = 0

α ∧ F + [e ∧. F] = 0

〈e ∧. F〉 = 0

They are equivalent to the Euclidean Einstein equations in vacuum.
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Hamiltonian description of the self-dual actionback

• We use the GNH approach and pullback everything to the primary
constraint submanifold M0 in phase space spanned by the fields
et, ωt ∈ Ω0(Σ, su(2)) ; e, ω ∈ Ω1(Σ, su(2)) ;αt ∈ Ω0(Σ) ;α ∈ Ω1(Σ).

• Vector fields in M0 have components
Yet ,Yωt ∈ Ω0(Σ, su(2)); Ye ,Yω ∈ Ω1(Σ, su(2)); Yαt ∈ Ω0(Σ); Yα ∈ Ω1(Σ).

• The presymplectic 2-form acting on vector fields Y ,Z in M0

ω(Z,Y) =

∫
Σ

(
〈Ye ∧. [e ∧. Zω]〉 − α ∧ 〈Ye ∧. Zω〉 − Zα ∧ 〈Yω ∧. e〉

− 〈Yω ∧. [Ze ∧. e]〉 − α ∧ 〈Yω ∧. Ze〉+ Yα ∧ 〈Zω ∧. e〉
)

• Secondary constraints

α ∧ F + [e ∧. F ] = 0
D([e ∧. e] + 2e ∧ α) = 0
〈e ∧. F 〉 = 0
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Hamiltonian description of the self-dual actionback

• Equations for the components of the Hamiltonian vector field Z

[e ∧. Zω]+ α ∧ (Zω−Dωt) = αtF + [et ∧. F ]

[e ∧. (Ze−Det− [e ∧. ωt])]+e ∧ (Zα−dαt) = etdα+[et ∧. De]−αtDe

〈e ∧. (Zω−Dωt)〉 = 〈et ∧. F 〉

• No conditions on Zet , Zωt and Zαt . They are arbitrary and, hence, the
dynamics of e it, ω

i
t and αt is also arbitrary.

• Tangency conditions

[Ze ∧. F ] + Zα ∧. F + [e ∧. DZω] + α ∧ DZω = 0

D
(
[e ∧. Ze ]− Zα ∧ e − α ∧ Ze

)
+ e ∧ 〈e ∧. Zω〉+ α ∧ [Zω ∧. e] = 0

〈Ze ∧. F 〉+ 〈e ∧. DZω〉 = 0
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Hamiltonian description of the self-dual actionback

Comments:

• One has to solve for the vector field in the equations written above.

• These are linear, inhomogeneous equations. It is important to find
the simplest way to write down their solutions in order to check, later,
that they satisfy the tangency conditions.

• This last step is highly non-trivial, but it is a crucial consistency
condition that has been neglected in previous work on this subject.

• The form of ω suggests to introduce H ∈ Ω2(Σ, su(2)) defined as

H := 1
2 [e ∧. e] + e ∧ α

which would be (essentially) canonically conjugate to ω.

What happens if we pullback everything to M0 and work with H, ω?
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Ashtekar formulation without gauge fixing back

• Introduce a fiducial volume form vol0 on Σ and define the vector field

H̃ :=

(
· ∧ H

vol0

)
canonically conjugate to ω in the standard sense.

• In terms of H̃ and ω the constraints become

div0H̃ + [ω
¬

H̃ ] = 0

〈H̃
¬
F 〉 = 0

[H̃
¬

[H̃
¬
F ]] = 0

which are the Gauss law, the vector and the Hamiltonian constraint
of the Ashtekar formulation for Euclidean GR.

• When the equations for the components of the Hamiltonian vector fields
are solved they give the expected dynamics.
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Ashtekar formulation without gauge fixing back

Comments:

• No gauge fixing is needed! (it is not necessary to use the
time gauge).

• The dynamics of Euclidean GR [in particular its full set of
symmetries, including SU(2) ⊗ SU(2)] is reflected in the
Hamiltonian vector fields.

• The local parameters in the gauge transformations are fun-
ctions of the arbitrary objects α, et and αt.

• The (arbitrary) field α disappears.
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Ashtekar formulation without gauge fixing back

Comments:

• No gauge fixing is needed! (it is not necessary to use the
time gauge).

• The dynamics of Euclidean GR [in particular its full set of
symmetries, including SU(2) ⊗ SU(2)] is reflected in the
Hamiltonian vector fields.

• The local parameters in the gauge transformations are fun-
ctions of the arbitrary objects α, et and αt.

• The (arbitrary) field α disappears.

Thank you!
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... and thank you, Jurek back
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