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Preamble
• Einstein’s equations imply that quantities defined at black hole horizons satisfy
a multitude of interesting relations. Fifty years ago, Bardeen, Carter and Hawking
(BCH) showed that, among relations that govern properties of nearby stationary
axisymmetric black holes, there is one that has an uncanny resemblance to the first
law of thermodynamics that relates the properties of nearby equilibrium states.

• Black holes out of equilibrium are described by Dynamical Horizons (DHs).
Twenty years ago it was shown that Einstein equations also imply that fields on
DHs also satisfy a multitude of interesting relations. New observations are:
(i) Evolution along a DH naturally defines a trajectory in the space of equilibrium states; and,

(ii) When thermodynamic parameters of equilibrium staters are transported back to MTSs of a

DH using this identification, one obtains a natural generalization of the first law to black holes,

arbitrarily far from equilibrium. Moreover this is a ‘physical process’ version.

• If one restricts oneself to infinitesimally separated MTSs, one recovers the
standard first law. Moreover, this discussion removes the apparent mystery behind
a recent finding that when first order perturbations are included, entropy is
naturally associated with the area of an MTS that lies ‘behind’ the event horizon
of the stationary black hole.
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1. Thermodynamics of BHs in Equilibrium
• In vacuum GR, BHs in equilibrium are described by Kerr solutions that have
two Killing vectors: ta, ϕa. A linear combination ¯̀a = ta + ΩHϕ

a is null on the
Event Horizon ≡ Killing Horizon. For two nearby equilibrium states we have the
first law: δE

(t)
H = κH

8πG
δAH + ΩH δJ

(ϕ)
H . (κH ∼ T ; AH ∼ S; ΩH ∼ µ; J

(ϕ)
H

∼ N) .

Here, κH is the surface gravity of ¯̀a: ¯̀a∇a ¯̀b = κH ¯̀b, that scales linearly with ¯̀a.
The rescaling freedom in ¯̀a is removed by requiring that ta be unit at infinity.
This strategy makes it seem that the first law is not intrinsic to the horizon.

• Remedy:
First note that ϕa has no rescaling freedom at H (its affine parameter φ ∈ [0, 2π)). So JH is
well-defined knowing just fields on H. Next, the horizon area AH =: 4πR2 is also intrinsically
well defined at H. So the Kerr horizons is characterized by the intrinsically defined pair R, J .
Using them one can fix the rescaling freedom in ¯̀a intrinsically on H by demanding that its

surface gravity be κH =
(R4−4G2J2)

2R3(R4+G2J2)
1
2

. Similarly, ΩH = 2J R(R4 + 4G2J2)
1
2 .

Once ¯̀a is thus fixed intrinsically, we can define ta on H by ta = ¯̀a − ΩHϕ
a.

• This shift from regarding ta as primary, and labelling equilibrium states by
(E

(t)
H ≡M, J) to labeling them by the “extensive variables” (R, J) is essential in

dynamical situations, e.g. with multiple BHs, because they are well-defined on
each horizon in its own right, without having to refer to infinity.
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2. BHs far from Equilibrium
• BH boundary now represented by a Dynamical
Horizon Segment (DHS)H ; a 3-manifold, S2 ×R, which is:

(i) nowhere null; and, (ii) foliated by Marginally Trapped Surfaces

(MTSs) S (on which Θ(`) = 0), on which the expansion Θ(n) of

the other null normal is nowhere vanishing.. (AA, Krishnan 2025)

For simplicity I will focus on the more common space-like H with

Θ(n) < 0, and assume that H approaches equilibrium in the distant

future (or past), represented by a Kerr isolated horizon ∆.

• Physics on H is governed by the constraint equations of GR (possibly with Λ):

Cs := R+K2 −KabKab − 16πGTab τ̂
aτ̂b = 0.

Cav := 2Db(K
ab − 2Kqab)− 16πGTbcr̂

bqac = 0.

For now, let us just note that there is a canonical procedure to drag the rotational
Killing field ϕa from the Kerr IHS to H (AA,Campiglia,Shah). Using it in the vector
constraint, one defines the angular momentum charge: J

(ϕ)
S := − 1

8πG

∮
S Kabϕ

adSb

which satisfies the balance law
J

(ϕ)
S2
− J(ϕ)

S1
= −

∫
∆H[Tabτ̂

aϕb + (Kab −Kqab)Lϕqab] d3V.

Thus, each MTS S has a well defined area radius RS (so that AS = 4πR2
S) and J

(ϕ)
S .
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3. To non-Equilibrium Thermodynamics: Strategy
• Dynamical BHS are like Open systems in which energy, angular momentum, &
‘heat’ can flow in. In thermodynamics, the non-equilibrium evolution is
well-defined; there is a Hamiltonian. But one no longer has (global)
thermodynamic parameters like Temperature, Pressure, ... This creates an
immediate obstacle to extending Thermodynamics to non-equilibrium situations.

• BHs are both simpler and more complicated. Simpler because:

Each stable Equilibrium state is completely characterized by just 2-parameters; the
textbook labels M,a or, more appropriate local, horizon labels R, J. Hence the
space E of equilibrium states of a BH horizon is just 2 -dimensional!
(ii) A non-equilibrium state, by contrast, is characterized by fields on a MTS S of
H MTS (the 2-metric; rotational 1-form, shears). Hence the space NE of
non-equilibrium states is infinite dimensional. Yet, as we just saw, among these
labels there are the two, R, J, that characterize the equilibrium states.

• Hence, unlike in the familiar thermodynamics systems, one has a natural map:
π : NE −→ E

obtained by ignoring the additional rich information/micro-structure that
distinguishes a MTS on one DHS and another, carrying same R, J. This is a major
simplification.
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• Thus, each DHS provides us with a trajectory in the space E of equilibrium
states. Using pull-back by π, we can associate each MTS on a given DHS –i.e., a
non-equilibrium state– ‘instantaneous thermodynamical parameters’ κ,Ω that are
specific functions of R, J on E! Under time evolution, they change because we
have an open system.

• Complication: In thermodynamical systems, the background space-time provides the notion

of time translation to which the Hamiltonian refers and we have an unambiguous notion of

energy. For black holes in equilibrium, we could start with the Killing field ¯̀a, that is null and

tangential to the horizon. The only freedom is in its rescaling which we fix by asking that its

acceleration equal κ(R, J). But DHS is space-like and there is no null vector tangential to it.

So: What is the appropriate analog of ¯̀a on a DHS?

• Let us analyze the simplest situation: Vaidya DHS.
Vaidya solution

0 

II 
� 

·O
i

schw

Mink

Here, ds2 = −(1− 2GM(v)
R

)dv2 + 2dRdv + R2d̊s2
2. In the

Schwarzschild region, V a ≡ ∂/∂v is the static Killing field that coincides

with ¯̀a on the horizon, with the correct κ ≡ κ(R, 0) = 1/2R. On the

dynamical region, V a = |DR|`a, is thus a natural extension of the

properly normalized Killing field ¯̀a. This is true for all spherically

symmetric DHSs. So we have a candidate for the analog of ¯̀a and E(V )

can serve as the analog of E(¯̀).
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4. Dynamical BHs with J=0
• BCH derived the first law using an appropriate linear combination of constraints on a partial

Cauchy surface, with lapse N and shift Na tailored to ¯̀a. For non-rotating DHSs, we have a

natural extension V a = |DR|`a of ¯̀a. Since `a = τ̂a + r̂a, as a first step, let us smear the

constraints on H with N = |DR| and Na = |DR|r̂a to find charges, fluxes and an energy

balance law, that will be directly useful in the next slide.

• Using the fact that Θ(`) = 0 on H and expressing the extrinsic curvature terms in
terms of projections σab` = q̃ac q̃bd∇c`d and ζa

(`)
= q̃ab r̂c∇c`b, in to MTSs, one finds

E
(V )
S2
− E(V )

S1
=
∫
∆H

{
[TabV

aτ̂b]︸ ︷︷ ︸
matter-flux

+ (16πG)−1 [|DR| (|σ(`)|2 + |ζ(`)|2)]︸ ︷︷ ︸
gw-flux

}
d3V

• For the J = 0 DHSs, the ‘charge’ E(V )
S

has a direct interpretation in terms of equilibrium

states E. It equals the pull-back of E(¯̀)
H

–which is also the Schwarzschild horizon mass since

J = 0. Thus, the right side, defined on the DHS, can also be interpreted as the change in the

horizon mass along the trajectory in E that the map π assigns to any given DHS.

• Note that there is a gravitational wave contribution to ∆E(V ) even though J = 0. This is

because, unlike for BHs in equilibrium, DHSs with J = 0 need not be spherically symmetric.

Example: The DHSs formed during the a head-on collision of spinless black holes. Now the

DHSs are not spherical and their area grows due to infalling gravitational waves! In this case,

only the second term contributes.
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1st law in the space of J = 0 non-equilibrium states
• Constraint equations of GR also imply an area balance law. By multiplying the
previous choice of lapse and shift by 4πR, one obtains:

AS2
−AS1

8πG
=
∫
∆H (̊κ−1)

{[
TabV

a τ̂b
]

+ (16πG)−1
[
|DR| (|σ(`)|2 + |ζ(`)|2)

]}
d3V.

Thus, area is the horizon ‘charge’ for the vector field 4πRV a, so that the
‘entropy-flux’ is given by the right side. The term in the curly brackets is just the
energy-flux ∆E(V ) on ∆H. In the area balance law, it is multiplied by (̊κ)−1, where
κ̊ =

(R4−4G2J2)

2R3(R4+G2J2)
1
2

|J=0 = 1
2R

is the ‘instantaneous temperature’ assigned to any

MTS of the DHS, via pull-back from E. Hence, when S2 and S1 are infinitesimally
close to one another, we obtain the familiar first law:

κ̊
8πG

δA = δE(V ) for J = 0.

Note that on the space of equilibrium states E the Killing field ¯̀a –the null
generator of the horizon– coincides with the time translation Killing field ta.
Hence E(V ) on the DHS equals E(¯̀) = E(t) = M on E.

• Note that the non-equilibrium version is a very non-trivial and subtle
generalization where the ‘dynamical temperature’ appears inside the integral,
multiplying the flux-density of energy.
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5. Extension to Dynamical BHs with J 6= 0.
The vector field V a = |DR|`a tends to ¯̀a in the distant future with surface gravity

κ̊ = κ(R, J = 0). Since κ(R, J) scales linearly with the vector field, in the J 6= 0 case it is

natural to use the rescaled vector field ξa =
(
κ(R, J)/κ(R, 0)

)
V a ≡ (κ/̊κ) V a, i.e., rescale the

previous lapse and shift by (κ/̊κ). With this change one obtains:

AS2
−AS1

8πG
=
∫
∆H (κ−1)

{[
Tabξ

a τ̂b
]

+ (16πG)−1
[
|DR| (|σ(`)|2 + |ζ(`)|2)

]}
d3V.

where κH is the surface gravity of the (Kerr) equilibrium state in E that is the image of the

MTS S under the projector π.

• The projection map π : NE → E suggests that we define a vector field ta on the DHS H via

ta = ξa − ΩHϕ
a and interpret the charge (or flux) associated with ϕa as angular momentum

charge (or flux) and that associated with ta as the charge (or flux) of t-energy. Then, setting

ξa = ta + ΩHϕ
a) and using the angular momentum balance law from part 2, one obtains:

AS2
−AS1

8πG
=
∫
∆H (κ−1)

{[
F(t)

matt + F(t)
gw

]
+ Ω

[
F(ϕ)

matt + F(ϕ)
gw

] }
d3V

=
∫
∆H (κ−1)

{[
F(t)

matt + F(t)
gw

]
−
[
(
∮
S2
−
∮
S1

) Ω jϕd2V
]

• Hence, when S2 and S1 are separated infinitesimally, one has the familiar 1st
law: κ

8πG
δA = δE(t) + ΩHδJ

(ϕ). But on DHS κ,Ω are the ‘instantaneous’ surface
gravity and angular velocity, associated with each MTS. Again, the fact that they
appear inside the integral is a non-trivial feature of dynamical BHs.
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6. Summary and Discussion.
• In both equilibrium and non-equilibrium situations, the first law is a direct
consequence of the constraint equations of GR in presence of horizons. There are
infinitely many identities implied by constraints. The first law emerges when a
judicious choice of lapse N and Shift Na is used to smear constraints. (In the

original BCH analysis, N,Na used in the constraints on a partial Cauchy slice correspond to the

correctly ‘normalized’ Killing vector ¯̀a that is the null generator of the horizon.) In the
dynamical situation N,Na correspond to the null normal ξa to MTSs of H that
tends ¯̀a as equilibrium is approached.

• An extension to fully non-equilibrium situations is possible because of two
non-trivial features of BHs in GR –discussed in part 3– that enables one to
unambiguously assign the ‘thermodynamic parameters’ to generic non-equilibrium
states. The result is an physical process version of the first law, in contrast to the
pioneering BCH analysis.

• What I presented is ‘an’ extension of the equilibrium thermodynamics to
generic non-equilibrium situations. It is very natural, but other extensions are
possible. For example, one may come up with another way to define ϕa on a DHS
and then the map π : NE → E will change but one may still obtain an acceptable
generalization of the first law to dynamic BHs.
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Comparision and Suggestions
• In the case of BH mergers, the framework works for the DHS of each
progenitor as well as of the remnant. These situations cannot be encompassed by
any of the perturbative approaches proposed since they only consider
perturbations on stationary space-times with an event horizon. Also, in the one
proposed by Hollands, Wald & Zhang one begins with the event/Killing horizon of a
stationary BH and arrives at a surprise that the perturbatively ‘corrected’ 1st law
refers to the area of an MTS inside the EH. This is ‘explained’ by the fact that in
a fully dynamical situation, the first law always refers to the area of a MTS on a
DHS, which is indeed inside the EH!

• There is a recent approach to non-equilibrium statistical mechanics put forward
by Buča in which the non-equilibrium evolution is also considered as a trajectory in
the space of equilibrium (Gibbs) states. It would be interesting to explore the
similarities and differences as they may suggest fertile directions for us.

• This setting –in which interesting physics arises from constraints on a space-like
surface– seems well-suited to quantum generalization via LQG techniques. In
particular, the linear combination of constraints that features is very natural in a
spinorial framework: (oAo†D) (FabA

B σaB
C σbCD). Also, the hypersurface Twistors

(that Lionel introduced) may provide new insights.
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